Vocabulary Sheet for Lesson 4-1

Definition	Diagram/ Notes
Facts of Congruence:	
Two shapes can only be congruent if	
you could place them on top of each	
other and have the corresponding	
sides and angles match up perfectly	
Stating Congruence: Using the previous pentagons we can make the following statements: - Pentagon $A B C D E$ is congruent to pentagon XYZVW because: - $m<A=m<X$ $m<B=m<Y$ - $m<C=m<Z$$\quad B C=Y Z$	
- $m<D=m<V$	$C D=Z V$
- $m<E=m<W$	$E A=V W$

Corresponding Parts:

The parts that are in the same place and have the same size in each shape are called corresponding parts

For triangles we can say that corresponding parts of congruent triangles are congruent (CPCTC) but this rule works for all shapes

Example 1:

- Suppose you know that \triangle FIN is congruent to $\triangle W E B$.
- Name three pairs of corresponding sides
- Name three pairs of corresponding angles

$$
\angle F \cong \angle W \quad \angle N \cong \angle B \quad \angle I \cong \angle E
$$

- Is it correct to say that \triangle NIF is congruent to $\triangle B E W$? Why or why not? yes, the corresponding parts swill Match up
- Is it correct to say that \triangle NIF is congruent to $\triangle E W B$?

Why or why not NO, corresponding parts don't Match up

Example 2

- The two triangles shown are congruent
- $\triangle A B O \cong \triangle C O D$
- $m \angle A=m \angle C$
- $\mathrm{AO}=\mathrm{CD}$
- Can you deduce yrs. Since that O is a midpoint? $A O=C O$
- Can you deduce that segment DC
II segment $A B$?

yes, since alt. int. angles are $\cong ~(L A \cong L C) ~$

Example 3:

- Plot the given points on the graph paper provided. Draw $\triangle F A T$. Locate point C so that $\triangle F A T$ is congruent to $\triangle C A T$

