Review for Chapter 2
Be sure you know the following vocabulary terms:
Conditional statement Counter example
Converse statement Deductive reasoning
Complementary angles Supplementary angles
Vertical angles Perpendicular lines
**Also be prepared for any Chapter 1 term in the vocabulary section of your chapter 2 test **

For the following problems write the converse of the conditional statement. Then decide whether each one is true or false (including the given statement) and whether it is biconditional.

1) If two angles are vertical, then they are congruent.

Converse:
2) If today is Tuesday, then tomorrow is not Friday.

Converse:

Write a counter-example for each of the following.
3) If a number is divisible by 4 , then it is divisible by 6 .
4) If $|x|=6$, then $x=-6$

Write the definition, postulate, property, or theorem that justifies the statement about the given diagram.
5) $\mathrm{AD}+\mathrm{DB}=\mathrm{AB}$
6) $m<1+m<2=m<C D B$
7) $<2 \cong<6$
8) If D is the midpoint of segment $A B$, then $\mathrm{AD}=1 / 2 \mathrm{AB}$
9) If ray DF bisects $<\mathrm{CDB}$, then $<1 \cong<2$
10) $\mathrm{m} \angle \mathrm{ADF}+\mathrm{m} \angle \mathrm{FDB}=180^{\circ}$
11) If $\overline{\mathrm{CD}} \perp \overline{\mathrm{AB}}$, then $\mathrm{m}<\mathrm{CDB}=90^{\circ}$
12) If $<4 \cong<3$, then $\overrightarrow{D G}$ bisects $<\mathrm{BDE}$
13) If $\mathrm{m}<3+\mathrm{m}<4=90^{\circ}$, then <3 and <4 are complements
14) If $<$ ADF and <4 are supplements, then $\mathrm{m}<\mathrm{ADF}+\mathrm{m}<4=180^{\circ}$
15) If $\overline{\mathrm{AB}} \perp \overline{\mathrm{CE}}$, then $<\mathrm{ADC} \cong<\mathrm{ADE}$
16) If <4 is complementary to <5 and
<6 is complementary to <5, then
$<4 \cong<6$
17) If $<$ FDG is a right angle, then $\overrightarrow{D F} \perp \overrightarrow{D G}$
18) If $<\mathrm{FDG} \cong<\mathrm{GDH}$, then $\overrightarrow{D G} \perp \overrightarrow{H F}$
19) The coordinates of L and X are 12 and 38, respectively. N is the midpoint of segment LX, and Y is the midpoint of segment LN. Sketch the diagram then answer the following.
a) $\mathrm{LN}=$
b) coordinate of N
c) $\mathrm{LY}=$
d) coordinate of Y

Find the coordinate of B.
20)

In the diagram, $\overrightarrow{O B}$ bisects $<A O C$ and $\overleftrightarrow{E C} \perp \overrightarrow{O D}$. Find the value of x .
21) $\mathrm{m}<5=2 \mathrm{x}, \mathrm{m}<3=\mathrm{x}$
22) $\mathrm{m}<1=2 \mathrm{x}, \mathrm{m}<2=6 \mathrm{x}+2$
23) $\mathrm{m}<2=6 \mathrm{x}+9, \mathrm{~m}<5=2 \mathrm{x}+49$
24) $\mathrm{m}<2=3 \mathrm{x}, \mathrm{m}<3=2 \mathrm{x}-4$
25) $\mathrm{m}<1=\mathrm{x}-8, \mathrm{~m}<2=2 \mathrm{x}+5$,
$\mathrm{m}<4=3 \mathrm{x}-26$
26) <1 and <2 are congruent angles. $m<1=10 x-20$ and $m<2=8 x+2$. What type of angle is angle 1 ?

Complete the following using the given diagram.
27) If $\overline{\mathrm{AF}} \perp \overline{\mathrm{FD}}$, then $\mathrm{m}<\mathrm{AFD}=\ldots$
28) If $<\mathrm{BFD}$ and $<\mathrm{DFE}$ are
complementary and $\mathrm{m}<\mathrm{BFD}=68^{\circ}$, then
$\mathrm{m}<\mathrm{DFE}=$
29) If $\mathrm{m}<\mathrm{FDE}=127^{\circ}$, then $\mathrm{m}<\mathrm{ADF}=$
30) If $\mathrm{m}<\mathrm{AFD}=\mathrm{m}<\mathrm{BFE}$, then $\mathrm{m}<\mathrm{AFB}=$
$\mathrm{m}<$

Answer Key:

1) Conditional (True)

Converse: If two angles are congruent, then they are vertical angles. (False)
Not biconditional
2) Conditional (True)

Converse: If tomorrow is not Friday, then today is Tuesday. (False)
Not biconditional
3) 16
4) $x=6$
5) segment addition postulate 21) $x=36$
6) angle addition postulate
22) $x=11$
7) theorem 2-3
23) $x=10$
8) midpoint theorem
24) $x=23$
9) definition of an angle bisector
25) $x=31$
10) angle addition postulate
11) definition of perpendicular lines
26) right angle
27) 90°
12) definition of an angle bisector
28) 22°
13) definition of complementary angles
29) 53°
14) definition of supplementary angles
30) $<$ EFD
15) Theorem $2-4$
16) Theorem $2-8$
17) definition of perpendicular lines
18) Theorem $2-5$
19) a) 13 b) 25 c) 6.5 d) 18.5
20) 76°

