Lesson 2-3

Proving Theorems

Reminders

- Postulates are statements that are accepted without proof
- Theorems are statements that are proven through the use of definitions and postulates

Midpoint Theorem

- If M is the midpoint of $A B$, then $A M=1 / 2 A B$ and $M B=1 / 2 A B$

Angle Bisector Theorem

- If $\overrightarrow{B X}$ is the bisector of $\angle A B C$, then $\mathrm{m}<\mathrm{ABX}=1 / 2 \mathrm{~m}<A B C$ and $\mathrm{m}<\mathrm{XBC}=1 / 2 \mathrm{~m}<\mathrm{ABC}$

Deductive Reasoning

- Proving statements by reasoning from accepted postulates, definitions, theorems, and given information

Example 1

- Write the postulate, theorem, or definition that justifies the statement below
- $\mathrm{m}<\mathrm{AEB}+\mathrm{m}<\mathrm{BEC}=\mathrm{m}<\mathrm{AEC}$ angle addition

Example 2

- Write the postulate, theorem, or definition that justifies the statement below
- $A E+E F=A F$

Segment addition postulate

Example 3

- Write the postulate, theorem, or definition that justifies the statement below
$m<A E B+m<B E F=180^{\circ}$
definition of
, a linear pair

Example 4

- Write the postulate, theorem, or definition that justifies the statement below
- If E is the midpoint of $A F$, then $A E \cong E F$

Example 5

- Write the postulate, theorem, or definition that justifies the statement below
- If E is the midpoint of $A F$, then $A E=1 / 2 A F$

Example 6

- Write the postulate, theorem, or definition that justifies the statement below
- If E is the midpoint of $\overline{\mathrm{AF}}$, then $\overrightarrow{E C}$ bisects $\overline{\mathrm{AF}}$

Example 7

- Write the postulate, theorem, or definition that justifies the statement below
- If ray $E B$ bisects $A F$, then E is the midpoint of $A F$

Example 8

- Write the postulate, theorem, or definition that justifies the statement belo
- If ray $E B$ is the bisector of $\angle A E C$, then $m<A E B=1 / 2 m<A E C$

angle bisector
theorem

Example 9

- Write the postulate, theorem, or definition that justifies the statement below
- If $<\mathrm{BEC} \cong<\mathrm{CEF}$, then ray EC is the bisector of $<\mathrm{BEF}$

