Notes for Lesson 1-3

Line Segment

 Part of a line that consists of two points, called endpoints, and all the points on the line that are between the endpoints

Α

В

(named segment AB, segment BA, \overline{AB} , or \overline{BA} with endpoints A and B)

Ka

 Part of a line that consists of a point, called an end point, and all points on the line that extend in one direction from the endpoint

(named ray AB or AB with endpoint A)

Opposite Rays

 Two rays that point in opposite directions and share a common endpoint

 $\begin{array}{cccc} \bullet & \bullet & \bullet \\ X & Y & Z \end{array}$

If point Y lies on line XZ then YX and YZ are opposite rays

Length

 The distance between two points on a line (length refers to the size of a line segment)

A

B

The length of \overline{BC} , denoted by BC, is the distance between point B and point C

(

Postulate

Ruler Postulate

 The points on a line can be paired with the real numbers in such a way that any two points can have coordinates 0 and 1

 Once a coordinate system has been chosen in this way, the distance between any two points equals the absolute value of the difference of their coordinates

Segment Addition Postulate

Congruent

Congruent Segments

To indicate that AB and XY have equal lengths you write

AB = XY

Note: line segments are congruent, lengths are equal

Midpoint of a Segment

 A point that divides, or bisects, a segment into two congruent segments

M is the midpoint of line segment VW which assures two facts:

VM = MW

VM is congruent to MW

Bisector of a Segment

 A point, line, ray, segment, or plane that intersects a line segment at its midpoint

Line EF bisects segment QP at point M

QM = MP