Notes for Lesson 1-3

Line Segment

- Part of a line that consists of two points, called endpoints, and all the points on the line that are between the endpoints

(named segment $A B$, segment $B A$,
$A B$, or $B A$ with endpoints A and B)

Ray

- Part of a line that consists of a point, called an end point, and all points on the line that extend in one direction from the endpoint

(named ray $A B$ or $\overrightarrow{A B}$ with endpoint A)

Opposite Rays

- Two rays that point in opposite directions and share a common endpoint

If point Y lies on line $X Z$ then $Y X$ and $Y Z$ are opposite rays

Length

- The distance between two points on a line (length refers to the size of a line segment)

The length of $\overline{B C}$, denoted by $B C$, is the distance between point B and point C

Postulate

- A rule that is accepted without proof.
- Also called an axiom.

Ruler Postulate

- The points on a line can be paired with the real numbers in such a way that any two points can have coordinates 0 and 1
- Once a coordinate system has been chosen in this way, the distance between any two points equals the absolute value of the difference of their coordinates

Segment Addition Postulate

- If B is between A and C, then

$$
A B+B C=A C
$$

Congruent

- Two objects that have the same size and shape

Since $\triangle A B C$ and $\triangle X Y Z$ are the same size and shape we can say that $\triangle A B C \cong \triangle X Y Z$

Congruent Segments

- Two or more segments with the same length

To indicate that $A B$ and $X Y$ have equal lengths you write

$$
A B=X Y
$$

Note: line segments are congruent, lengths are equal

Midpoint of a Segment

- A point that divides, or bisects, a segment into two congruent segments

M is the midpoint of line segment VW which assures two facts:

$$
V M=M W
$$

VM is congruent to MW

Bisector of a Segment

- A point, line, ray, segment, or plane that intersects a line segment at its midpoint

Line $E F$ bisects segment $Q P$ at point M

$$
Q M=M P
$$

