Using Area Formulas for Parallelograms, Triangles, Rhombuses, and Trapezoids

Parallelograms:
Area $=(b)(h)$ where the height is the vertical distance from top to bottom
Triangles:
Area $=\frac{1}{2}(b)(h)$ where the height is the vertical distance from a vertex to its opposite side

Rhombuses:
Area $=\frac{1}{2}\left(d_{1}\right)\left(d_{2}\right)$ where $d=$ the length of a diagonal
Trapezoids:
Area $=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ where the height is the vertical distance from one base to another

Use the above formulas to find the area of the following.

Find the areas of each.
5)

15

$$
\begin{aligned}
\frac{x}{10} & =\frac{\sqrt{3}}{2} \\
2 x & =10 \sqrt{3} \\
x & =5 \sqrt{3}
\end{aligned}
$$

7) $P=64 \mathrm{ft}$

$$
\begin{aligned}
A & =\frac{1}{2}(16)(16-\sqrt{3})^{8)} \\
& =128 \sqrt{3} f t^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{x}{16}=\frac{1}{2} & \frac{y}{16}=\frac{\sqrt{3}}{2} \\
x=8 & 2 y=16 \sqrt{3} \\
& y=8 \sqrt{3}
\end{array}
$$

$$
\begin{aligned}
x^{2}+10^{2} & =26^{30} \\
x^{2}+100 & =676 \\
\sqrt{x^{2}} & =\sqrt{576} \\
x & =24
\end{aligned}
$$

