

Build-A-Membrane

Abstract

Cut, fold, and paste biomolecules to create a three-dimensional cell membrane with embedded proteins.

Logistics Time Required **Class Time:** 30 minutes Prep Time: 10 minutes **Materials** Biomolecule cut-outs Scissors Tape Copies of student instructions Prior Knowledge Needed None

Secondary

College

Learning Objectives

Membranes have proteins embedded in them.

Membrane-embedded proteins allow cellular signals and other molecules to pass through the membrane.

Appropriate For:

Primary

Intermediate

Build-A-Membrane

Classroom Implementation

Activity instructions:

- Have students work individually or in pairs to build a portion of a cell membrane by following the instructions on the student pages.
- On a large table, have students put their completed membrane sections together, matching channel protein to channel protein, to create one large, protein-studded membrane.

Quantities Per Group of 2 Student pages S1 - S4 Scissors Tape

Print-and-Go TM

Discussion Points:

- · A cell is enclosed, or defined by a membrane.
- A wide variety of proteins are located in and around membranes. These proteins can associate with membranes in a variety of ways.
 - » Integral proteins extend through one or both layers of the phospholipid bilayer.
 - » Some proteins are attached to lipid molecules which anchor them to the membrane.
 - » Receptor proteins transmit signals across a membrane.
 - » Transporter and channel proteins form pores through the membrane that can be opened and closed to allow specific molecules to pass through.
- Membranes also organize the interior of a cell. Cell organelles are defined by membranes.
- Membranes form spontaneously.

Standards

Extensions

Research a membrane protein and its specific function.

U.S. National Science Education Standards

Grades 9-12:

• Content Standard C: Life Science - The Cell; Cells have particular structures that underlie their functions. Every cell is surrounded by a membrane that separates it from the outside world.

B. AAAS Benchmarks for Science Literacy:

Grades 9-12

The Living Environment

- Cells
 - » Every cell is covered by a membrane that controls what can enter and leave the cell.

Module

Print-and-Go TM
http://learn.genetics.utah.edu

Genetic Science Learning Center

Amazing Cells

Build-A-Membrane

Credits

Molly Malone, Genetic Science Learning Center Sheila Avery, Genetic Science Learning Center (illustrations)

Funding

Funding for this module was provided by a Science Education Partnership Award from the National Center for Research Resources, a component of the National Institutes of Health.

Why Visit Our Website?

Visiting the Teach.Genetics website has its benefits. You'll get exclusive access to great resources just for you!

- Get links to resources for this and other Print-and-Go™ activities.
- · Access extra media materials for this module.
- Download classroom-ready presentations and graphics.
- Tips for using Print-and-Go[™] activities with online materials.

and much more!

Build-A-Membrane

Cell membranes are made of phospholipid molecules that arrange themselves into two rows called a bilayer. Proteins are embedded in the phospholipid bilayer, through one or both layers. These proteins help other molecules cross the membrane and perform a variety of other functions. Create a model of a small section of cell membrane by following the instructions below.

- 1. Cut out the phospholipid bilayer (page S2) along the solid lines. Cut all the way to the edges of the paper in the direction of the arrows.
- 2. Fold the phospholipid bilayer along the dotted lines and tape the edges together to form a fully enclosed rectangular box.
- 3. Cut out each protein (pages S3 and S4) along the solid black lines and fold along the dotted lines.
- 4. Form a 3-D shape by joining the protein sides and tops together and tape them in to place. Use the tabs to help you.
- 5. Tape the 3-D proteins into place along the edges of the phospholipid bilayer.
- 6. By staggering the transmembrane proteins back and forth along both long sides of the bilayer "box", the whole model will stand up by itself on a table.

Protein Cut-outs

