Activity and Notes for Lesson 6-4: Inequalities for One Triangle

Step 1: make sure you have the following sized pieces of linguini in your bag

$$
2 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm} \text {, and } 7 \mathrm{~cm}
$$

Step 2: Make a triangle by joining the following pieces endpoint to endpoint

$$
2 \mathrm{~cm}, 3 \mathrm{~cm}, \text { and } 4 \mathrm{~cm}
$$

Step 3: change the 2 cm side to a 5 cm side

$$
5,3,4
$$

What changes did you notice in the triangle?

$$
\begin{aligned}
& \text { obtuse } \rightarrow \text { right } \\
& \Delta \text { got larger }
\end{aligned}
$$

Rules for sides and angles in a triangle:

* The longest side is across the triangle from the largest angle
* The shortest side is across the triangle from the smallest angle
* The medium sized side is across from the medium sized angle
- If two sides are congruent then the angles across from them are congruent

Example:

a) name the angles in order from smallest to larges \dagger
b) name the sides in order from smallest to larges t

Example: Which segment (in a) or angle (in b) shown in each picture would be the longest of the entire diagram.
a)

b)

Use your linguini to fill in the following table:

Pieces to use			Can they make a triangle?	$a+b \leq c$	$b+c \ldots a$	$a+c<b$
(a)		(c)				
2 cm	2 cm	4 cm	no	$2+2=4$	$2+4>2$	$2+4>2$
2 cm	3 cm	7 cm	no	$2+3<7$	$7+\gg 0$	$0+7>3$
3 cm	4 cm	5 cm	yes	$3+4>5$	$4 \times 5>3$	$3+574$
4 cm	5 cm	7 cm	yes	$4+5>7$	$5+7>4$	\& ${ }^{\text {¢ }}$

What do you notice about the sides that did make a triangle?

$$
a \|>
$$

Theorem 6-4: The Triangle Inequality Theorem
The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Example: decide whether it is possible for a triangle to have sides with the lengths indicated.
a) $10,9,8$
b) $6,6,20$
c) $16,11,5$

$$
\begin{array}{ccc}
9+8>10 & 6+6<20 & 11+5=16 \\
y \text { gs } & \text { no } & \text { no }
\end{array}
$$

Example: the lengths of two sides of a triangle are given. Write the numbers that best complete the statement: The length of the third side must be greater than \qquad but less than \qquad _.
a) 6,9

$$
6,9,
$$

\qquad b) $7 n, 10 n$

$$
3<x<15
$$

$$
3 n<x<17 n
$$

