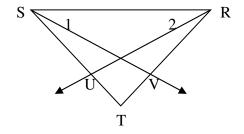
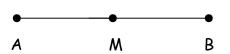
Practice Worksheet for Lesson 2-3 (part II)

Name:

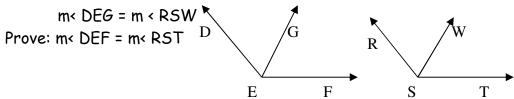

Fill in the missing information on the given proofs.

1) Given: M is the midpoint of \overline{PQ} ; N is the midpoint of \overline{RS} ; PQ = RS Prove: PM = RN

•	•	•	•	•	•
Р	M	Q	R	Ν	S


Statements	Reasons
1. M is the midpoint of \overline{PQ}	
N is the midpoint of \overline{RS}	
2. $PM = \frac{1}{2} PQ$; $RN = \frac{1}{2} RS$	
3. PQ = RS	
4. $\frac{1}{2}$ PQ = $\frac{1}{2}$ RS	
5. PM = RN	

2) Given: \overrightarrow{SV} bisects < RST; \overrightarrow{RU} bisects < SRT; m< RST = m< SRT Prove: m< 1 = m< 2


Statements	Reasons
1) \overrightarrow{SV} bisects < RST	
\overrightarrow{RU} bisects < SRT	
2) m< 1 = $\frac{1}{2}$ m< RST	
$m < 2 = \frac{1}{2} m < SRT$	
3) m< RST = m< SRT	
4) $\frac{1}{2}$ m< RST = $\frac{1}{2}$ m< SRT	
5) m< 1 = m< 2	

3) Given: M is the midpoint of \overline{AB} Prove: AM = $\frac{1}{2}$ AB; MB = $\frac{1}{2}$ AB

Statements	Reasons
1) M is the midpoint of \overline{AB}	
2) $\overline{AM} \cong \overline{MB}$, or AM = MB	
3) AM + MB = AB	
4) AM + AM = AB, or 2AM = AB	
5) $AM = \frac{1}{2} AB$	
6) MB = $\frac{1}{2}$ AB	

4) Given: \overrightarrow{EG} is the bisector of < DEF; \overrightarrow{SW} is the bisector of < RST;

Statements	Reasons
1) \overrightarrow{EG} is the bisector of < DEF \overrightarrow{SW} is the bisector of < RST	
2) m< DEG = $\frac{1}{2}$ m< DEF; m< RSW = $\frac{1}{2}$ m< RST	
3) m< DEG = m< RSW	
4) ½ m< DEF = ½ m< RST	
5) m< DEF = m< RST	