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Unit 1

Functions and Relations

Objectives:

[E—

Define relation, function, domain, and range

2. Be able to determine if a relation is a function given ordered pairs or a table

3. Be able to determine if a relation is a function given a graph (including 2
part piecewise)

4. Be able to identify the domain and range of a relation given ordered pairs or
a table

5. Be able to identify the domain and range of a relation given a graph (should
be able to use inequality signs and interval notation; include 2 part piecewise
graphs as well)

6. Analyze a set of data for the existence of a pattern by completing a table or a
sequence

7. Be able to express a pattern as an equation given a table

8. Be able to represent a sequence as an expression

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5 6 7 8






Unit 1 Objective 2 Remediation

Determining a Function given Ordered Pairs

A function is a pairing between two sets of numbers in which each element of the first set is
paired with exactly one element of the second set.

Examples

1. {(2,3), (3,4), (4,5), (5,6)} is a function because each first element (x-coordinate or
input) is paired with a different second element (y-coordinate or output).

2. {(2,3), (3,4), (4,5), (3,6)}is not a function because the first element 3 is paired with

4 and also with 6. In order to have a function, 3 can only be paired with one second
element.

Try These

Determine if the following relations are functions.

1. {(4,3), (-2,10), (5,—6), (10,7)} 1.
2. {(=3,-6), (=5,10), (—1,2), (0,0)} 2.
3. {(2,7), (3,7), (57), (6,7)} 3.
4. {(7,2), (7,3), (7,4), (7,5)} 4.
5. {(-5,3), (6,5), (3,2), (10,3)} 5.
6. {(6,4), (-5,2), (6,7), (—8,8)} 6.
7. {(11,5), (2,7), (-3,8), (—=3,10)} 7.
8. {(9,4), (3,2), (—6,4), (8,7)} 8.
9. {(-=7,4), (8,12), (9,12), (6,13)} 9.

10. {(8,6), (=5,2), (0,6), (=5,1)} 10.




Determining a Function given a Table

Examples
1. 2.

X y X

1 -4 -7 0

5 -3 -8 -1

8 -2 -9 2

9 -2 -7 -3
This is a function because each first element This is not a function because the first
(x-coordinate or input) is paired with a element —7 is paired with 0 and also with —3.
different second element (y-coordinate or In order to have a function, —7 can only be
output). paired with one second element.
Try These

Determine if the following relations are functions.

1. 2. 3.
X y X Yy X Yy
1 1 4 -4 2
1 -6 2 4 -4 3
2 8 3 4 -4 4
2 -8 4 4 —4 5
4 5. 6
X y X y X y
3 2 0 -5 0 -6
5 4 2 6 -2 | 4
7 5 9 -3 4 -2
3 7 5 0 -6 -2




Unit 1 Objective 3 Remediation

Determining if a Graph is a Function

To determine if a graph is a function or not a function, we use the Vertical Line Test. If a
vertical line intersects the graph at more than one point, then the graph is not a function. A graph
is a function if a vertical line does not intersects the graph at more than one point.

Examples

2. This graph is a function because any
vertical line does not intersect the
graph at more than one point.

1. This graph is not a function because
a vertical line intersects the graph at
more than one point.

1 _— Vertical Line — | / \

Try These

Determine if the following graphs are functions or not functions.
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Unit 1 Objective 4 Remediation

Finding Domain and Range given Ordered Pairs

The domain is the set of the first coordinates in a set of ordered pairs of a relation or function
(usually the x-coordinate).

The range is the set of the second coordinates in a set of ordered pairs of a relation or function
(usually the y-coordinate).

Examples

State the domain and range: {(2,3), (3,4), (4,5), (5,6)}

The domain is all the x-coordinates. D = {2,3,4,5}
The range is all the y-coordinates. R = {3,4,5, 6}

State the domain and range: {(2,—3), (3,—3), (4,-5), (3,—-5)}

The domain is all the x-coordinates. D = {2, 3,4}
The range is all the y-coordinates. R = {—5, —3}

Try These

State the domain and range for each relation.

1. {(4,3), (—2,10), (5,—6), (10,7)} 1.
2. {(=3,-6), (=5,10), (=1,2), (0,0)} 2.
3. {(=7,4), (8,12), (9,12), (6,13)} 3.
4. ((7,2), (7,3), (7,4), (7,5)} 4.
5. {(=5,.3), (6,5), (3,2), (10,3)} 5.

6. {(6r4)r (_5r 2)! (61 7)1 (_8r8)} 6.




Finding Domain and Range given a Table

Examples

State the domain and range for each relation.

X Yy X Yy
1 4 =7 0
5 -3 -8 -1
8 -2 -9 2
9 -2 -7 -3
Domain is the x-coordinates. Domain is the x-coordinates.
D ={1,5,8,9} D ={-9,-8,-7}
Range is the y-coordinates. Range is the y-coordinates.
R ={-4,-3,-2} R=1{-3,-1,0,2}

Try These

State the domain and range for each relation.

1. 2. 3,
x y x y x y
1 6 1 4 4 | 2
1 | -6 2 4 4 | 3
2 8 3 4 4 | 4
2 | -8 4 4 4 | 5
4 5. 6
x y x y x y
3 2 0 | -5 0 | -6
5 4 2 6 2 | 4
7 5 9 | -3 4 | =2
3 7 5 0 6 | -2




Unit 1 Objective 5 Remediation

Finding Domain and Range from a Graph

Domain — input values, x-values. On a graph this means you are looking left and right
1. How far left does the graph go? How far right does the graph go?

Range — output values, y-values. On a graph this means you are looking up and down.
2. How far down does the graph go? How far up does the graph go?

Domain Range

a= | 1

Interval Notation:
a. Use (‘and ) for infinity (c0) and open end points (O) — this means there really isn’t a

point at that value
b. Use [ and ] for everything else — this means that there is a point at this value

Examples

1.) 4 Domain:

The most left is at —4, the most right is at 6.
Both endpoints are included in the domain
~N so we use [and]

X Domain: [—4, 6]

Range:
The farthest down is at —4, and farthest up
is at4
Both endpoints are included in the domain
so we use [and ]

Range: [—4, 4]



2)

Try Some

Domain:

The graph never stops going to the left (—o0) and
never stops going to the right (o)

We will use ( and ) since both endpoints are oo

Domain: (—o0,0) or R

Range:

The farthest down is at 0, and the graph never stops
going up ()

There is a point at 0 so we use [ but we will use )
for the oo

Range: [0, o)

Find the domain and range of each graph. Write your answer in interval notation.
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Unit 1 Objective 6 Remediation

Analyze a Set of Data for the Existence of a Pattern by Completing a

Table or a Sequence

Ways to identify a pattern:

1. Check to see if the same number is added, subtracted, multiplied, or divided
2. Check to see if there is a second level common sum or difference

Example A
17 37 57 77 —_—

The difference from one number to the next is +2, so to find the next three numbers,
you add 2 to the previous number. Answers: 9,11, 13

Example B
X 0 5 15 30 50 75
y 6 —-12 24

The numbers are going from positive to negative and are doubling. Therefore, you
multiply by —2 to get the next number in the sequence. Answers: —48, 96,—192

Try some

Complete the table or sequence.

1.) 10, 15, 20, 25, , , 4.) 100, 50, 25, 12.5, , ,

2.) —45,—-42,-39,-36, , , 5.)2, 6, 18, 54, , ,

3)8, 6, 4, 2, , , 6.) 12, 15, 19, 24, , ,




7.)

10 20 30 40 50 60
3.5 3.6 3.7
8.)
0 1 2 3 4 5
0.8 —3.2 12.8
9)
—4 —3 —2 —1 0 1
2.5 3.6 4.8
10.)
0 2 4 6 8 10
—45 —48 —51
11.)
—3 —2 —1 0 1 2
—10 —14 —19




Unit 1 Objective 7 Remediation

Express a Pattern as an Equation Given a Table

Being able to write an equation from a table is an important skill; it helps you find values that
aren’t in the table more easily.

Steps in Writing an Equation from a Table

1.) Use y = mx + b (Slope-Intercept Form) = you must fill in numbers for m and b.

2.) Find m (Slope): m = Sengeiny

change in x

3.) Find b (y-intercept) by finding the y value when x = 0. You may need to use the pattern
to fill in more spots on the table.

4.) Substitute m and b intoy = mx + b

Examples

1.) Write an equation to represent the table below:

x 0 1 2 3 4 5
y 12 15 18 21 24 27

Step 1 —Start withy =mx+b 2> y= __ x+___

Step 2 — Find m: m=_1512_3

=3
Ax 1-0 1

Step 3 — Find b: Look at the table to where x = 0, we see that y = 12, this means b = 12

Step 4 — Fill in the values for m and b: y = 3x + 12 < Final Equation

2.) Write an equation to represent the table below:

x 2 4 6 8 10 12
y 3 -2 | =7 | -12 | -17 | =22

Step 1 —Start withy =mx+b 2> y= _ x+

_ Ay _-2-3 _ -5

Step 2 — Find m: m

T Ax 4-2 2

Step 3 — Find b: Since there is not a spot where x = 0 we have to continue the pattern

Z Work backwards to where x = 0, since y = 8 that means b = 8
X 0 2
v 8 3

(

Step 4 — Fill in values for m and b: y = — gx + 8 < Final Equation



Try These

Write the equation for the given table. Write your final equation on the line provided.

1)
X 0 1 2 3 4 5
y 0.5 1 1.5 2 2.5 3
Equation:
2)
X -2 0 2 4 6 8
y —-12 -14 | -16 | —18 | =20 | -22
Equation:
3)
X 5 10 15 20 25 30
y 3 0 -3 —6 -9 -12
Equation:
4)
X 3 5 7 9 11 13
y 35 37 39 41 43 45

Equation:




5)

6)

7

8)

12 24 36 48 60 72

6 12 18 24 30 36
Equation:

-8 -7 -6 -5 —4 -3

5 0 -5 -10 —15 -20
Equation:

-3 -2 -1 0 1 2

-5 -3 -1 1 3 5
Equation:

—4 -2 0 2 6 8

1 2 3 4 6 7

Equation:







Unit 1 Objective 8 Remediation

Represent a Sequence as an Expression

A sequence is an ordered list. If a there is a pattern to the sequence we can represent the sequence
with an expression. This is useful because we can use the expression to find any term (the n'" term) in
the sequence very easily without having to write out all the numbers in the sequence.

Representing a sequence with an expression is very similar to writing an equation from a table.
We will be using the mx + b part to make our expression (an expression does not have an equal
sign).

Example

Look at the following pattern: 8, 17, 26, 35, 44, ...
Write an expression to that could be used to find the n'™ term in this pattern.
Step 1: Label the numbers in the sequence as 1% term, 2" term, 3" term, etc

n = 1 2 3 4 5 € label above like this
8, 17, 26, 35, 44, ...

Step 2: Now that the terms are labeled, you are going to write the expression using the same
steps as writing an equation from a table.

Use mx + b but instead of x we will be using n since we are asked for the n' term, so it will
look like mn + b

Find m by taking 2" term — I*{term: m=17—-8=9 >m =9

Find b by finding the initial term when n = 0, follow the pattern backwards:

0 1 2 3 4 5 2>b=-1
-1, 8, 17, 26, 35, 44, ...
) 4

Step 3: Fill in your values for m and b into mn + b:

Final expression: 9n — 1

Check: If we put 5 in for n we should get 44 since the 5" term in the sequence is 44.

9(5) —1 =45 -1 = 44 - This works!



Practice

Write an expression to that could be used to find the n'" term each pattern.

1.) 4,9, 14, 19, 24, .. 2) 9,51, -3, =7,..
Expression: Expression:

3) 15, 3, 45, 6, 75, .. 4) 32, 21, 10, -1, —-12, ...
Expression: Expression:

5.) 123, 181, 239, 297, ... 6.) 6, 30, 54, 78, ...
Expression: Expression:

7.) Below are the scores that Jordan earned on his SAT exam.
890, 960, 1030, 1100, 1170

Jordan’s scores follow a pattern. Write an expression that can be used to determine his SAT
score after n times taking the test.

Expression:

8.) Tim’s scores in the first 5 times he played a video game are listed below.
4,526 4,599 4,672 4,745 4,818

Tim’s scores follow a pattern. Write an expression that can be used to determine his score
after n times he played the video game.

Expression:




Unit 2

Linear Functions

Objectives:
1. Define linear equation, slope, x-intercept, y-intercept, slope-intercept form,
and standard form
Identify the x-intercept and y-intercept given a graph
Identify the x-intercept and y-intercept given an equation
Determine the slope of a line given a graph
Determine the slope of a line given two points
Determine the slope of a line given an equation

Convert a linear equation to slope-intercept form

® NS R D

Convert a linear equation to standard form

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5 6 7 8






Unit 2 Objective 2 Remediation

Identify the x-intercept and y-intercept Given a Graph

To find the x-intercept from a graph, locate the x axis that runs from the left to the right on the
graph. Find where the line intersects this axis. The point will be (___, 0).

To find the y-intercept from a graph, locate the y-axis that runs from north to south on the graph.
Find where the line intersects this axis. The point will be (0, ___).

Example: v,

x-intercept: (2,0)

x-intercept

w

X y-intercept: (0, —4)

/R y-intercept

Try Some
Find the x-intercept and y-intercept of each graph.
Va Y&
1) 2) 1
x-int: x-1nt:
\
\
¢ ”
\
y-int: \‘ y-int:
‘.'l'l b Y F N
3) C ' 4.) '
) x-int: x-int:
\\\\
‘ b \\\ > ¢ 7 >
- y-1nt: y-1nt:




5.)
x-int:
. x
y-int:
w
EIII F 9
7))
= )
o x-1nt:
) x
y-int:
w
}I F
9)
x-1nt:
X
/
/)
y-int:
w

6.)

l‘-:llllh

x-1nt:

F 3

8.)

y-int:

F

10.)

w W

y-int:

y-int:



Unit 2 Objective 3 Remediation

Identify the x-intercept and y-intercept Given an Equation

To find the x-intercept from Standard Form, a zero will be used in place of the y value, since the x-
intercept is always (___, 0). The y-value is always O for the x-intercept.

To find the y-intercept from Standard Form, a zero will be used in place of the x value, since the y-
intercept is always (0, ___). The x-value is always 0 for the y-intercept. NOTE: if the equation is in
slope-intercept form (y = mx + b) then you can get the y-intercept right from the equation
without doing any work. The y-intercept is the b-value.

**Whichever intercept you are finding, put a 0 in for the other variable

Example

Find the x-intercept and y-intercept of the equation 2x —y = 6

x-Intercept = putaOinfory, y-Intercept = puta O in for x,
then solve for x then solve for y
2x—0=6 200—y=6
x =3 -y =6
y=-6
x-intercept: (3,0) y-intercept: (0, —6)
Try Some

Find the x-intercept and the y-intercept for each equation.

1. 4x -3y =12 2. y=3x+6

x-Int: y-Int: x-Int: y-Int:



3. x—-3y=-3

x-Int: y-Int:

5. 2x+5y =10

x-Int: y-Int:

7. 2x—y=-—6

x-Int: y-Int:

9. 4x+3y =4

x-Int: y-Int:

x-Int: y-Int:

6. y=-—-5x—2

x-Int: y-Int:

8. y=—§x+3

x-Int: y-Int:

100 y=2x-7

x-Int: y-Int:



Unit 2 Objective 4 Remediation

Determine the Slope of a Line Given a Graph

To find the slope of a line from a graph, two points must be found that the coordinates can be easily
found. Coordinates that are easily found are from points that are found on the graph where the
horizontal and vertical lines of the grid intersect. Once these two points are found, the slope can be
determined one of two ways.

Method 1: Use the slope formulam = % Va
2741

Step 1 - Find the coordinates of two points on the line

(0,—4) and (1, —2).

Step 2 — use the slope formula and plug in the values for

= W

x and y using the points you found in step 1.
{11 '2]

Using the formula, m = Y22h

Xo—X1
/[0- -4)
_—2-(-4) _ 2

m= =-=2

1-0 1

Method 2: Use % on the graph. Remember that Ya

graphs that point up on the right side have positive slope

and graphs that point down on the right side have Run (2) 7
Rise (4)
negative slope. >
Start at (1, —2) and go to (3,2). The graph rises 4 blocks
and runs 2 block. That makes m = % = 2.
**]t does not matter which points you choose on the line, v

you will get the same slope.



Try Some

Find the slope of each of these graphs using either Method 1 or Method 2.

1.) Va
) ”
¥ 4
3)
\\.
A X
5.) Va

B

2.) Ya
\
\
: : x
1!
V4
4.)
‘ 7 >
6.) Va
< —
X




7.)

d
Ya
9.)
L
11.)
) g

8.)

10.)

12.)

&
»
) X
v
Ya
»
X
v
Ya
»
X







Unit 2 Objective 5 Remediation

Determine the Slope of a Line Given Two Points

To find the slope of a line from two points, the slope formula must be used.

Y2 — V1
X2 —X1

Slope Formula: m =

Example

Find the slope of the line that goes through the points (—3,5) and (2, —5).

XY XY,
First, label the points with x4, x5, y1, 5! (-3, 5) (2,-5)

Next, substitute the values into the slope formula; then simplify the fraction completely.
Yamyi_ =575 _ -0,
X2 — X1 - 2—(—3) - 5 -

m =

The slope of the line is —2.

Try These

Find the slope of the line that goes through the points listed. Show all work.
1. (—4,-2)and (3,7) 2. (4,3)and (8,0)

3. (2,—7)and (—8,3) 4. (9,—12) and (—3,-6)



5. (—15,0) and (0,11) 6. (—1,—11) and (=3, -7)

7. (1,-5)and (—6,—10) 8. (—20,16) and (4, —8)

9. (5,2)and (—4,—4) 10. (3,—3)and (3,3)

11. (—36,13) and (-8, —3) 12. (15,—4) and (=15, —4)



Unit 2 Objective 6 Remediation

Determine the Slope of a Line Given an Equation

To find the slope of a line from an equation, the equation must be in slope-intercept form
(y = mx + b). The m is the slope.

Therefore you must change the equation to slope-intercept form. To put an equation into slope-
intercept form, solve the equation for y. The slope will be the number in front of the x (the
coefficient of the x term).

Example 1

Find the slope of the equation: y = %x +2

This equation is already in y = mx + b so we just need to find the mvalue > m = %

3
So the slope = —
11

Example 2

Find the slope of the equation: 3x — 2y =11

This equation is NOT in slope intercept form so we need to convert it to y = mx + b.

Move the x term to the other side: —2y=-3x+11
. - -3 11

Get the y all by itself by dividing by -2: y=5x +_—2

Simplify the fractions: y = %x - %

. L . . 3
This equation is now in slope-intercept form so we can get our slope: m = 5

The slope of the line is ;

Try Some

Find the slope for each of these equations. Show all work.

1. y=—§x+2 2.2x -8y =1



3.y=9x -5

5. y=§x—10
7. y=—-11x
9. y=%x—14
11. y = -7

13. y=—-2x+4

4. 5x +y =7

6. —2x—7y =28

8. x—7y=14

10. 6x +8y =5

12. =5x — 20y =8

14. 8x+y =4



Unit 2 Objective 7 Remediation

Converting a Linear Equation to Slope-Intercept Form

y=mx-+b

The goal of converting an equation to Slope-Intercept Form is to isolate y on one side of the

equation. Thus, to convert to slope-intercept form, perform inverse operations on terms until y
stands alone on one side.

Example

Convert 4x + 6y = 7 to slope-intercept form. 4x + 6y =7

Subtract 4x from both sides —4x — 4y
6y = —4x +7
Divide both sides by 6 6?3’ — —49:7
-4 7
y = ?x + P
i i 2 7
Simplify y=-2x+l

So,4x + 6y = 7 convertstoy = —%x +%

Try These
1) 4x — 2y = —10 1.
2) x+ 6y =24 2.
3)3x—y =28 3.

4) 5x + 7y = 20 4,




5.) 2y —3x = —42

6.) 5y + 2x = 15

7) 6x = 14 — 2y

8)5x+2=-y+6

9)7—-2y=6-2x

10.) Sy+5=4-x

10.




Unit 2 Objective 8 Remediation

Converting a Linear Equation to Standard Form

Ax+ By =C

The goal of converting an equation to Standard or General Form is to place x and y on one side of
the equation and the constant term (the number) on the other side. Then, if necessary, convert
all coefficients to integers. If any of the coefficients or the constant are fractions, multiply the entire
equation by the least common denominator of all the fractions. This will eliminate the fraction.

Example
Convert y = gx — 5 to Standard Form. y= gx -5
Flip the left and right sides gx —5=y
Add 5 to both sides +5 +5
%x =y+5
Subtract y from both sides -y -y
%x —y=5
Eliminate the fractions by multiplying by 3 3 Gx - y) = 3(5)
2x—3y =15
So,y = gx — 5 converts to 2x — 3y = 15
Try These
I. y=—4x—-6 1.
1
2. y= Xt 1 2.




5. y=-3x+10

7. 6x =14 -2y

8. §x+2=ly+6

9. 7-2y=6—-2x

10. 2y +5=4—x

10.




Unit 3

Graphing Linear Equations

Objectives:
1. Identify, describe, and/or use constant rates of change
2. Graph an equation in slope-intercept form
3. Graph an equation in standard form

4. Graph horizontal and vertical lines

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4






Unit 3 Objective 1 Remediation

Identify, Describe and/or Use Constant Rates of Change

Constant rates of change are real-world examples of slope. Examples would be feet per second,
days per week, ballots in an envelope, windows in a car, meals for a person, or people for a bus.
Notice that there is the word “per”, “for a”, or “in a” between the two parts of the rate of change.

e _ Y2y

. ris .
Because slope is P S the first word represents the y-value and the second word represents
2741

the x-value. It is also important that the second word is for 1 unit.

Acceptable rates of change would be:

35 miles per hour 44 people for a bus 50 ballots in an envelope
35 miles 44 people 50 ballots
1 Hour 1 bus 1 envelope

If there is a fraction, put the whole fraction in the numerator and put 1 in the denominator.

. 3% cookies . éfeet
Such as: 7/2 cookies per person =—-——— or 1/3 feetin asecond = 2*——
1 person 1 second

Example

Sharon is a barber. After 2 days, she cut 15 people’s hair. After 4 days, she cut 25 people’s hair.
A. Identify the constant rate of change.

(2,15) and (4, 25) are the two points given by the data. Itis not (15,2) and (25,4). The

reason for this is that one would note how many haircuts per day and NOT how many days

per haircut.
yz—y1=25—15 — 5
Xy —Xq 4 -2

Usem =

B. Describe the constant rate of change in haircuts per day.
There were 5 haircuts per day. It was not 5 days per haircut, as that doesn’t make sense.

C. How many haircuts can be done in 7 days?
Since the rate of change is the slope, and therefore the value of m, an equation can be found
for the problem.

y=mx+b Use m = 5 and either one of the points to find b.
m = 5and (2,15),sox =2andy =15
15=5-2+0»b
b=5
y=5x+5 Since days are x-values, put 7 in place of x and find y, which will be
the number of haircuts in 7 days.
y=5-7+5

y =40 40 haircuts will be done in 7 days.



Example

The graph below shows the number of rabbits in a neighborhood over 10 weeks.

: e
pe

=
o
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N

Number of Rabbits
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o

8
-
6
4
2
0
0 1 2 3 4 5 6 7 8 9 10 11
Weeks
A. Identify the constant rate of change. Usem = % = % =1

B. Describe the constant rate of change in rabbits per week.
a. There was one more rabbit in the neighborhood per week.

C. How many rabbits would there be in 20 weeks?
a. Usey =mx + b. The slope is 1 and the graph intersects the y-axis at 6, so the
equation is y = x + 6. The 20 weeks value is an x-value. Put 20 in for the x-value
and solve for y. y =20 + 6 = 26 rabbits in 20 weeks.

Try These

Answer each question. Show all work used to find the answers.

1. Jayla was on a hiking trip. She hiked 41 miles in 2 days and 121 miles in 6 days.
A. Identify the constant rate of change.

B. Describe the constant rate of change in miles per day.

C. How many miles will she hike in 10 days?



2. Yasir was a realtor specializing in selling lots in a new housing development. He sold 17 lots in 2
weeks and 35 lots in 6 weeks.

A. Identify the constant rate of change.

B. Describe the constant rate of change in lots in a week.

C. How many weeks will it take him to sell 53 lots?

3. Tyrone planted a tomato garden each year for 5 years. His results are in the graph below.

Ya
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S 100 A
—
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Qo /'
IS 50
>S5 /
=2 q
0 1 2 3 4 5 6 x

Years

A. ldentify the constant rate of change.

B. Describe the constant rate of change in tomatoes per year.

C. How many tomatoes will Tyrone grow in 7 years?



4. Olga planted trees in a park. By the end of the third week, she had planted 56 trees. By the end
of the fifth week, she had planted 70 trees.
A. Identify the constant rate of change.

B. Describe the constant rate of change in trees each week.

C. How many trees can she plant in 8 weeks?

5. Mitzel’s Bakery makes donuts over 7 days. The data is in the graph below.

Yo
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Number of Donuts

4000

2000

o 1 2 3 4 5 6 >

Days

A. Identify the constant rate of change.

B. Describe the constant rate of change in donuts in a day.

C. How many days will it take to make 20150 donuts?



Unit 3 Objective 2 Remediation

Graphing an Equation in Slope-Intercept Form

Slope-Intercept Form of an equation: y = mx + b

It is called slope-intercept form because m is the slope and b is the y-intercept.

We need to use both the slope and y-intercept to graph the equation so you need to identify these
values before graphing.

When graphing:
a. Always plot the y-intercept first; once you plot this point you will not use the
y-intercept again
b. From your point that you plotted, you use the slope to plot more points
c. Finally, you use a ruler to connect all of your points; remember to put arrows at the
ends of the line since it continues in both directions

Example One

Graph the line y = 2x — 3
Step 1: Identify slope and y-intercept —
y=2x—3

Slope =2  y-intercept = —3

Step 2: Graph the y-intercept (it will be on the y-axis)

Step 3: Starting at the point you already plotted (the y-intercept), use the slope to plot more
points. Since the slope is 2, we go up 2 right 1.

rise
¢ Remember: Slope = —
run

>

L Up 2, right 1




Step 4: Use a ruler to connect your points. Put an arrow at each end since the line continues.

Example Two

This graph is the final solution.

Graph the line y = — %x

Step 1: Slope = — é; y-intercept = 0 since there is no b value.

Steps 2 and 3: Graph the y-intercept and slope. Since the y-intercept is 0, we plot the intercept

on the origin. From there use the slope. Since slope = — g, we go down 2, right 3.

Step 4: Use your ruler to connect the points, and then put arrows at both ends.

R

N

By




Try Some! Graph each equation.

slope =

v

L)y=:x—4 2)y=—-x+3
y-int = slope = y-int =
3)y=3x—1 4)y=—2x+1
y-int = slope = y-int =

slope =

r N

v
r' N

v




5Dy = —%x

y-int = slope =
T)y=x—4
y-int = slope =

6.)y=-2x+4

y-int =

slope =

r N

v

v

r' N

8.)y=§x—5

y-int =

slope =

v

r N




Unit 3 Objective 3 Remediation

Graphing an Equation in Standard Form
Standard form of a linear equation is Ax + By = C
There are two methods to doing problems like this.

Method 1

For the first method, you must find the x-intercept and the y-intercept. Plot these points and then
connect the points to graph the line.

Graph: 5x —4y =-20

To find the x-intercept,

To find the y-intercept,
substitute 0 in for y and solve for x.

substitute 0 in for x and solve for y.

5x —4(0) = —-20 5(0) —4y = —-20
5x = =20 —4y = =20
5x _ —20 -4y _ —20
5 5 —4 -4
x=—4 y=5

x-intercept (—4, 0) y-intercept (0, 5)

Method 2

The second way is to solve the equation for y and put the equation into Slope-Intercept form, as
y = mx + b. Then graph the equation as we did in Objective 2.



Graph: 5x —4y = -20

Solve the equation for y.

—5x — 5x
—4y = —5x — 20
-4 —-5x  —20

Y =2
-4 5—4 -4
y=,x+ 4

The slope is % and the y-intercept is (0,4).

Start at the point (0, 4) and rise 5 blocks from
that point, then run 4 blocks to the right.

Connect the points.

Try These

Graph each linear equation.

1. 3x+y=6

r 3

v

2. 5x -2y =-10

r N

v




3. 2x—-8y =4

4. 9x + 6y =12

r N

v

r N

v

5. x—4y=-8

r 3

v

6. x+y =10

F

v




7. 7x =2y =-10

r N

v

9. 6x+y=-6

r N

v

. 2x+3y=9

r' N

v

10. 4x — 5y = 20

r N

v




Unit 3 Objective 4 Remediation

Graphing Horizontal and Vertical Lines

Horizontal lines will be written in the form y = b.

Since all y values will be the same for such a line, the x value may be any number. Look at the
following example: y = 4.

X y The y values must be 4. The x values may be any number. Plot all of these
-1 4 points and you will have a horizontal line.

0 4

1 4

2 4

AN
\ 4

Vertical lines will be written in the form x = a.

Since all x values will be the same for such a line, the y values may be any number. Look at the
following example: x = —3.

X y The x values must be —3. The y values may be any number. Plot all of these
-3 -2 points and you will have a vertical line.

-3 -1

-3 0 A

-3 1




Try These: Graph each horizontal or vertical equation.

1. y=6

r 3

v
r N

v

r 3

v
r N

v

r 3

v
F

v




x=0

r 3

v

10.

x=6

9. y=0

r N

v







Unit 4

Writing Linear Equations

Objectives:

. Write or identify a linear equation given a graph

. Write or identify the equation of horizontal and vertical lines given a graph

|
2
3.
4
5

Write or identify a linear equation given the slope and point on the line

. Write or identify a linear equation given two points on the line

. Model a situation with a linear equation

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5






Unit 4 Objective 1 Remediation

Writing the Equation of a Line from a Graph

Steps for Writing the Equation from the Graph
¢ Find the slope, m, from the graph
¢ Find the y-intercept, b, from the graph
e Write the equation in slope-intercept form using the values you found for m and b

y=mx+|b

Example

10 Find two points on the line. From these two points, find the
slope.

From the graph, find the y-intercept.

{9

Using slope-intercept form, p

-10 10

e values for m and b.

-10

Answer: y=-2x+6
Try These

1)

. a.) What is the slope of the line?

b.) What is the y-intercept?

'y
r

c.) Use your answers in a and b to write the
equation of the line in slope-intercept form

2)

= a.) What is the slope of the line?

P

b.) What is the y-intercept?

c.) Use your answers in a and b to write the
equation of the line in slope-intercept form




3) a.) What is the slope of the line?

b.) What is the y-intercept?

— c.) Use your answers in a and b to write the
- equation of the line in slope-intercept form

4)) a.) What is the slope of the line?

i b.) What is the y-intercept?

c.) Use your answers in a and b to write the
equation of the line in slope-intercept form

Write the equation, in slope-intercept form, of each line below.

5.) 6.)
Equation: Equation:
7.) 8.)
7
i
p { N p n
Peeed
’ Ty
| o
-
] p

Equation: Equation:




Unit 4 Objective 2 Remediation

Writing the Equation of a Horizontal or Vertical Line from a Graph

Equation of a Vertical Line: x = a Equation of a Horizontal Line:y = b

Example:

Equation of Line a:
S Line a is horizontal so it willbe y = b

Since the line hits the y-axis at —3 the equationis: y = —3

F 3
r

Equation of Line b:
Line b is vertical so it willbe x = a

ry

Since the line hits the x-axis at 6 the equationis: x = 6

v

Write the equation for each line shown below.

1) 4 2.) 4
j' b Q\
\i /
a k)
a
h b
h'd
h
Equation of Line a: Equation of Line a:
Equation of Line b: Equation of Line b:
3.)

Equation of Line a:

Equation of Line b:

-»
y

k'

. .\







Unit 4 Objective 3 Remediation

Write or Identify a Linear Equation Given the Slope and a Point

Slope-intercept Form: y = mx + b where m is the slope of the line and b is the y-intercept.
Substitute the slope for m

Use the given point to substitute for x and y

Solve for b

Re-write the slope-intercept form substituting for m and b

Example One

Write the equation of the line in slope-intercept form.
1

Slope = 3 Goes through (2, 3)

y=mx+b
=1/,@+b
3=1+5b
2=b

.

Example Two

Write the equation of the line in slope-intercept form.
Slope = —3 ; Goes through (—1,—-5)

y=mx+b
—5=-3(-1)+b
—-5=3+b
—2=b
y=-3x—2

Try These

Write the equation in slope-intercept form.
1. Slope =2 ; Line goes through the point (2, 1)

2. Slope =3 ; Line goes through the point (4, —2)



3. Slope = Z ; Line goes through the point (—8, 0)

4. Slope =—1 ; Line goes through the point (5, —2)

5. Slope = 0 ; Line goes through the point (3, —6)

6. Slope = —% ; Line goes through the point (2, 5)

7. Slope = g ; Line goes through the point (—1, 3)

8. Slope = —3 ; Line goes through the point (5, —1)

9. Slope = —6 ; Line goes through the point (2, 0)

10. Slope = % ; Line goes through the point (5, —3)



Unit 4 Objective 4 Remediation

Write or Identify a Linear Equation Given Two Points

Slope-intercept Form: y = mx + b where m is the slope of the line and b is the y-intercept.
Y2 -1

X2 — X1

Use the one of the given points to substitute for x and y

Substitute in the value you found for m

Solve for b

Re-write the slope-intercept form substituting for m and b

¢ Find the slope of the line m =

Example One
Write the equation of the line in slope-intercept form that goes through the points (0, 2) and (2, 3)

3-2
=—=1
m=o"5= /2
y=mx-+b
=1/,@+b
3=1+b
2=h

42

Example Two

Write the equation of the line that goes through the points (=5, 3) and (1, —3)

-3—-3 -6
" 1-(-5) 6
y=mx-+b
-3=-1(1)+b
-3=-1+b
—-2=b

m =-1

y=—-x-—2

Try These

Write the equation in slope-intercept form.
1. (3,4) and (2,1)

2. (—2,4) and (4,-2)



3. (=1,4) and (=8,0)

4. (4,5) and (5,-2)

5. (3,—4) and (3,-6)

6. (—2,—5) and (2,5)

J

. (3,2) and (—1,3)

8. (4,3) and (5,—1)



Unit 4 Objective 5 Remediation

Writing and Applying Linear Models

Example One

Membership to the local gym costs $99 plus a monthly fee of $25.

A. Write an equation that represents cost C of being a member for m months.

Since it cost $25 each month, this is the slope. m = 25.
The one-time fee of $99 is the y-intercept. b =99
Using these two values, write the equation. C=25m+99

B. How much would it cost to be a member for 24 months?
Substitute 24 in for m and solve for C.
C =25(24) +99
C = $699
It costs $699 for 24 months at the local gym.

C. Ifit cost $249, for how many months would you be a member?
Substitute $249 for C and solve for m.

249 = 25m+ 99
150 = 25m
m==6
6 months cost $249 at the local gym.

Try These

1. Jillian is opening a new savings account with a gift of $200 from her grandmother. She plans of
putting $25 each week into the account.
a. Write an equation for the total savings S of putting money in the savings account for w weeks.

b. How much would she have after 8 weeks?

2. Steven wants to have a stand at a fair to sell personalized license plates. It costs $100 per day after
paying a setup fee of $500.
a. Write an equation for the total cost C of having the stand for d days.

b. Ifit cost Steven $1,300, how many days was he at the fair?



3. You want to have your lawn treated by a local lawn company. It will cost $150 to have your lawn
evaluated and $300 per quarter of a year to have treatments given to your lawn.
a. Write an equation for the total cost C to have your lawn treated q quarters of a year.

b. How much would it cost for 2 years?

Example Two

Bruce is having electrical problems and calls an electrician. The electrician charges a service fee plus $32
per hour he works. For two hours of work he charges $103 and for five hours of work he charges $199.

Write an equation that represents cost C of hiring the electrician for x hours of work.

Since it cost $32 per hour, the slope is 32. m = 32

From the problem, we write two points. (2,103), (5, 199)

We must find the y-intercept using the slope m = 32 and one of the points (2, 103).
y=mx+b
103 =32(2)+b
103 =64+0b
b =39

Using these two values, write the equation. C=32x+39

Try These

4. To order boxes of paper for a company, the options are 10 boxes for $150 and 15 boxes for $200.
a. Write an equation for the cost C of b number of boxes of paper.

b. How much would it cost for 75 boxes of paper?

5. At a bridal store, 2 bridesmaid dresses cost $900 and 5 bridesmaid dresses cost $1800.

a. Write an equation for the C cost of d dresses.

b. How many bridesmaid dresses could be bought with $2400?



6. When Paula orders books online for her book club, she must pay a shipping fee in addition to the
cost of each book. She ordered 35 books and it cost her $152. On her next order, it cost her $140 for
32 books.

a. Write an equation for the total cost C of b number of books.

b. How much would it cost if she ordered 10 books?

c. Paula received a bill that stated she owed $116. How many books did she order?

7. lillian has her own business selling pastries. When a customer uses a credit card, she must pay the
credit card company a flat fee plus a fee per transaction. In the month of May she had 54 credit card
transactions that cost her $89. In the month of June she had 67 credit card transactions that cost her
$102.

a. Write an equation for Jillian’s cost C for n number of credit card transactions.

b. In the month of July Jillian had 42 credit card transactions. What did the credit card company
charge her?

c. Inthe month of August Jillian received a bill from the credit card company stating that she
owed $119. How many credit card transactions did she have in August?

8. Kyle buys new car for $25,900. Every month the car decreases in value. After 6 months the car is
worth $24,850. After 1 year (12 months) the car is worth $23,800.
a. Write an equation that represents the value of Kyle’s car IV after m months.

b. After how many months would the car be worth nothing?

c. How much is the car worth 5 years later? (Remember m = months)






Unit 5

Inequalities

Objectives:

Identify inequality symbols

Graph an inequality on a number line

Graph a compound inequality on a number line
Solve linear inequalities

Solve compound linear inequalities

Solve absolute value compound inequalities

N o kRN =

Model situations using linear inequalities

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5






Unit 5 Objective 2 Remediation

Graphing Inequalities on a Number Line

Example One: Graph:x > 7

First, we need to mark our number line.
Since there is no line under the symbol, x cannot equal 7, so we put an open dot above 7.
In this case, x is bigger than 7, so we draw the arrow to the right.

ot D)

-0 -8 6 4 -2 0 2 4 6 8 10

Example Two: Graph: x <3

First, we need to mark our number line.
Since there is a line under the symbol, x can equal 3, so we put a solid dot above 3.
In this case, x is smaller than 3, so we draw the arrow to the left.

10 8 6 -4 -2 0 2 4 6 8 10

Example Three: Graph: 7 > x

First, re-writeas x < 7.

Next, we need to mark our number line.

Since there is no line under the symbol, x cannot equal 7, so we put an open dot above 7.
In this case, x is smaller than 7, so we draw the arrow to the left.

oD

-0 -8 6 4 -2 0 2 4 6 8 10

If the variable is on the right,
change it to the left BEFORE you graph.



Graph each inequality on the number line provided.

1)

3)

5)

7)

9)

11)

—3<x

x < -3

2)

4)

6)

8)

10)

12)

At ———t—t—t——>

2>x

-1<x

x> -1

3>x

—3<x



Unit 5 Objective 3 Remediation

Graphing Compound Inequalities on a Number Line

Review on graphing inequalities:

1. First, identify the compound inequality as a Conjunction (And) or a Disjunction (Or).
2. If the compound inequality is a Conjunction (AND) you be shading between the two numbers.
3. If the compound inequality is a Disjunction (OR) you will be shading in opposite directions.

Example One

Graph: -3 <x <2
This is a Conjunction since x is between the two numbers.

Put an open dot on —3 since it is a < symbol — this means that x is greater than —3

Put a closed dot on 2 since it is a < symbol — this means that x is less than or equal to 2

Shade between the two numbers.

Example Two

Graph: x < —-10Rx >4
This is a Disjunction since there is an OR

Put a closed dot on —1 since it is a < symbol — this means x is less than or equal to —1

Put a closed dot on 4 since it is a = symbol — this means x is greater than or equal to 4

Shade the tails since this is a disjunction.

«—

|
I
L

_?II



Graph each compound inequality on the number line provided.

1. -3<x<1 2. x=230Rx< -1
> A —————t—t—t—t—t——t>
3. -3<x<0 4. 2>x>-3

A ——————> A —t——t—t—t—t——>
5. x<-30Rx=>=2 6. - 1<x OR x< -3

A —t—t—t—t—t—t—t> A —————t——t————>
7. x=200R x< -3 8. —-1<x<3

A —t—t—t—t—t—t—t> A —————t——t————>
9. - 6<x<-4 10 x >3 ORx <1

A ——————> A
11. x >50R x < 3 12. -3<x<2

Attt ————+—+t+> Attt



Unit 5 Objective 4 Remediation

Solving Linear Inequalities

Remember that you switch the inequality sign if you are...
e Multiplying by a negative number
¢ Dividing by a negative number
e Switching the left and right sides of an inequality

Example One

Solve 30 = 2x + 10 30 > 2x + 10
Subtract 10 from both sides —-10 - 10
20 > 2x
Divide both sides by 2 2=
10 > x
Switch the left and right sides x<10
Example Two
Solve —2(2x —3) <5 —2(2x—-3)<5
Distribute —2 —2x+6<5
Subtract 6 from both sides -6 —6
—2x < -1
Divide both sides by —2 __—sz > :—;
Switch the inequality sign! x> %
Example Three
Solve 2x — 13 < —3x + 2 2x —13 < —-3x+2
Add 3x to both sides +3x +3x
5x —13< 2
Add 13 to both sides +13 +13
5x <15
Divide both sides by 5 Z<2

x<3



Solve the following inequalities.

1) 25<2x+5 2) —x—7=2-9

3) 14x+2<-26 4.) —4+%x2—12
5) 10> 2(x— 1) 6) —(2x — 6) > —14
7.) %(12x+6)>7 8) 4<—2(16x —8)
9) 5—x>9+«x 10.) -4+5x>3—x

11) 4x+1<2x+5 12) fx<2+x
“x <



Unit 5 Objective 5 Remediation

Solve Compound Linear Inequalities

Compound inequality — Two inequalities that are combined into one statement by the word and
or or.

The graph of an AND compound inequality is the intersection or overlapping region of the two
parts of the inequality. This type of compound inequality is called a conjunction.

The other type of compound inequality using OR is called disjunction. A compound inequality
involving OR has solution regions that are the union or the total of the solution regions of the
separate parts of the inequality.

Example One

Solve: —-5<3x+7<10

Solve each inequality separately and then combine the results to form a compound

inequality.

—5<3x+7 AND 3x+7<10
—12 < 3x 3x<3

—4 <x x<1

The solutionis —4<x<1

Example Two

Solve: 2x+1<13 OR x—-5=> -5

2x+1<13 OR x—5>-5
2x <12 x=0
x<6

The solutionis x <6 OR x > 0

Try These

Solve the inequalities.

1. 2x>8 or —3x <15 2. 2x+1>5 and x—8<2



3. 14+2x>5 and 8—x<7 4, —-1<2x—-1<11

5. 2(x—2)<4 or 4<2(x—-2) 6. =14 >5x+6>—4

7. 2x —4>—-2 or 2x—6< -2 8. -3<2x+15<21

9. 2x+1<1 or x+5>8 10. 2x—5< -5 or 3x—-2>1



Unit 5 Objective 6 Remediation

Solve Absolute Value Compound Inequalities

What does it . . How do we write
What does it look like? i
mean? it?

x is all the numbers

|x|>a more than a units away <| — |2 | m x<—-aorx>a

from 0 on the number 0 disjunction
line - 4

x is all the numbers

more than or equal to a x<—aorx=a
|x| 2a

units away from 0 on 4 0 a disjunction
the number line

x is all the numbers less a<x<a
|x| <a | than a units away from H—l—l—lMl—l—l—»

. conjunction
0 on the number line -a 0 a )

x is all the numbers less

than or equal to a units —a<x<a
|x| <a

away from 0 on the conjunction

. -a 0 a
number line
Graph the following.
1. |4>3
4 | | | | | | | | | | | | | | | | | | | | | b
b | T 1 T T T T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 L4
-0-9-8§-7-6-5-4-3-2-1 01 2 3 45 6 7 & 9 10

2. 42> |x| Hint: Put the absolute value on the left FIRST! = |x| <4

d ] | ] ] ] ] | ] | ] | ] | ] | ] | ] | ] | 'Y
| I | I I I | I | I | I | I | 1 | 1 | I I L4
-o-9-8-7-6-5-4-3-2-1 01 2 3 45 6 7 & 9 10
3. |x[<4
d ] | ] ] ] ] | ] | ] | ] | ] | ] | ] | ] | 'Y
| I | I I I | I | I | I | I | 1 | 1 | I I L4
-o-9-8-v-6-5-4-3-2-1 01 2 3 4 5 6 7 & 9 10
4. |x|25
d ] | ] ] ] | ] | ] | ] | ] | ] | ] | 'Y
| I | I I I | I | I | I | 1 | 1 | I I L4




Example One — Disjunction

Solve |[2x — 4| > 6
Rewrite the problem as a disjunction and solve.

2x —4 < —6 or 2x—4>6
2x < =2 2x > 10
x < —1 or x>05

Graph the solution AN . VN 2. PR

-10 8 6 4 -2 0 2 4 6 8 10

Example Two — Conjunction

Solve |5—3x|—-3<1
Isolate the absolute value before you change it to a compound inequality

|5—3x| <4
Rewrite the problem as a conjunction and solve.
—-4<5-3x<4 Subtract 5
-9<-3x < -1 Divide by —3, so don’t forget to switch signs

3>x>-=

3
—2<x<3
3

Graph the solution

|

Try These
1. |x+1]>3 2. |-9x| <54
L S R B B B S e e -



3. |[-2x—6]=5 4. |6+9x|+4<28

——t— > —t———t—— >
108 6 4 2 0 2 4 6 8 10 0 8 6 4 2 0 2 4 6 8 10
5. |-8x—-3|>11 6. |4x+ 10| —-6=>18
L S R B B e S e e —f—Ft 1ttt
108 -6 4 2 0 2 4 6 8 10 08 6 4 2 0 2 4 6 8 10
7. =5>|x+5|—-6 8. 9|x+8|+10<55






Unit 5 Objective 7 Remediation

Modeling Inequalities

>

>

<

<

is more than
is greater than

is larger than

minimum

at least

is not less than

is smaller than

is less than

is fewer than

maximum

at most

is not more than

above no less than below no more than
not smaller than is not greater than
Examples

1. Grace’s grandfather is at least 60 years old. g =60

2. Conner’s grade is above an 88%. g > 88

3. Nate was no more than 5 minutes late. n<5

4. Kara’s ring finger is smaller than a size 7. r<7

5. Mandi needs to arrive between 5 and 6 o’clock. 5<m<e6

Try These

6. The temperature is less than 32° F.

7. The forensics team must have at least ten students to complete.

8. An elevator can carry no more than 15 people.

9. The trip to the Outer Banks takes between 6 and 8 hours.

10. To attend a Raven’s game you will spend a minimum of $75.

11. The cost of dinner was more than $40.

12. Michael Jordan has a vertical leap of no less than 38 inches.

13. The number of kids that signed up to play tennis is at most 50.



Example

The Dallastown High School band wants to order polos. They will receive a discounted price of
$24 per shirt plus a $25 delivery fee if they spend at least $250. What is the minimum number of
polo shirts they must buy?

Let p = the number of polo shirts

Inequality: 24x + 25 > 250
Solution: x =9.375

Interpret your solution: The band must buy at least 10 shirts to receive the discount.

Try These

14. You want to rent a limousine for a trip to Baltimore’s Inner Harbor. The limo costs $300 for
the night and $0.15 per mile. You have a maximum of $350 to spend. What is the maximum
number of miles you can travel?

Let
Inequality:

Solution:

Interpret your answer:

15. Taylor is having a birthday party. Chuck E. Cheese costs $13 per person while Suburban
Bowlerama costs $10 per person plus a $24 fee for food. For how many people would Chuck
E. Cheese be cheaper than going to Suburban Bowlerama?
Let
Inequality:

Solution:

Interpret your answer:



16. The senior class wants to make money for their senior party. They already have $2500

17.

18.

raised and want to have more than $4000. They decide to sell gift cards for Giant Foods.
Giant will give them S5 for every gift card they sell. What is the minimum number of gift
cards the senior class must sell?

Let

Inequality:

Solution:

Interpret your answer:

George does not want to spend more than $225 for Christmas presents. He has already
spent $176. He finds vintage t-shirts for $12 that he would like to buy for his friends. What
is the greatest number of t-shirts he can buy without exceeding his budget?

Let

Inequality:

Solution:

Interpret your answer:

Ellie needs to order books for her book club. Each book cost $7.99. She can get free
shipping if she spends more than $100. What is the minimum number of books she needs to
order to receive free shipping?

Let
Inequality:

Solution:

Interpret your answer:






Unit 6

Systems of Equations

Objectives:

1. Determine whether a point is a solution to a system of equations

2. Solve a system of equations by graphing (including infinite solutions, no
solutions, and one solution)

3. Solve a system of equations using the substitution method

4. Solve a system of equations using the elimination method

5. Wirite, solve, and interpret systems of equations in the context of problem

situations

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5






Unit 6 Objective 1 Remediation

Determining Whether a Point is a Solution to a System of Equations

How to test a point:
e To tell whether a point is a solution to a system, substitute the ordered pair into EACH
equation for x and y.
e If the ordered pair satisfies BOTH equations, then it is a solution to the system.
e If the ordered pair does not work for either of the equations, it is NOT a solution.

Example
Is (—1, 6) a solution to the syst -{x+7=y
s (—1, 6) a solution to the system: _4x+2=y
Substitute in values for both equations: x = —1 and y = 6.
Equation 1: Equation 2:
x+7=y —4x+2=y
-14+7 76 —4(-1)+2 ? 6
6=06 4+2 76
Point works for Equation 1 6 = 6 - point works for Equation 2

Since the point makes BOTH equations true, the point (—1, 6) IS a solution to the system.

Try These

Determine if the point is a solution to the system. You must show work to support your answer.

1.) Is (=5, —3) a solution to the system: 2.) Is (—4, —2) a solution to the system:
{y=—2(x—4)—7 {y=—3(x+1)+3
y=x-4)—-4 4x +2y =2
3.) Is (3, 1) a solution to the system: 4.)Is (—3,—11) a solution to the system:
{y=—2(x—2)+3 {—4x+y=1
y=-3x+10 y=x-—2



5.) Is (3,—10) a solution to the system:

y=—4x—2
{3x+y=—1

7.) Is (3, 3) a solution to the system:
{y =4(x—-3)+3
y=-3x+12

9.) Is (4, —2) a solution to the system:
{y=—3(x—2)+5
y=2(x-2)

6.) Is (1, —3) a solution to the system:
{y =3(x+2)-8
y=2(x+2)-7

8.) Is (4, 4) a solution to the system:
{y =3(x—-5)+7
—-x+y=0

10.) Is (—6, —3) a solution to the system:
{4x —2y=-18
y=3x+12



Unit 6 Objective 2 Remediation

Solving a System of Equations by Graphing

To solve a system of equations by graphing you need to graph each line separately.
You will get one of the following answers:

e If the lines intersect, the solution is their intersection point
e |f the lines are parallel, there is no solution

e |f the lines are the same line, the answer is all points on the line

Example

) . 2x—y =8
Solve the following system by graphing: { Xx+y=1
Step 1: Graph the first equation. You might need to
convert to slope-intercept form (solve for y)

Ya Equation 1
2x—y =28 10
—2x — 2x
—y=-2x+8
-1 -1 -1 5 A

y = 2x — 8 -> Graph this equation \ /
(Slope = 2, y-int= —8)

X
Step 2: Graph the second equation. You might need to CE N
convert to slope-intercept form. N — Solution
-5 (3: '2}
x+y=1 / \
y / Equation 2
-x - X 10 |
10 5 0 5 10

y=—-x+1 - Graph this equation
(Slope = —1, y-int=1)

Step 3: Find the solution. Since these lines intersect, the solution is the point where they intersect.

Solution: (3, —2)



Practice

Solve each system by graphing.

y=—x+1 3Ix+y=4
1'){y=x—3 2'){—3x+y=—2
Solution: Solution:
3 {x+y=—2 4 {y=—3x+1
) y=2x+7 ) —4x+2y =72

Solution: Solution:




y=—-x—-3
5'){y=x—1

F 3

v

Solution:

Solution:

6){y=—2x+3
“"ly=3x+3

F 3

L J

Solution:

y=-2
8) {Zx “oy=—4

Solution:







Unit 6 Objective 3 Remediation

Solving a System of Equations using Substitution Method

Steps for Substitution
1. Solve one of the equations for one of its variables = need to have either x = ory =

2. Substitute the expression from step 1 into the OTHER equation and solve for the other variable.

3. Substitute the value from step 2 into the one of the original equations and find the value of the

second variable.

Example

: . I 2x—y =26
Solve the following system using substitution: {Zx +2y=-9

Step 1: Solve one of the equations for one of its variable. Look for the variable that has a coefficient of 1
(no number written in front). We will be solving the first equation for y.

Equationl: 2x—y =6 - solve fory
—2x —2x
—y = —2x+ 6 > Divide by —1 to get y all by itself
-1 -1 -1
y=2x—6 ->yisbyitself so we are ready for Step 2

Step 2: Take the equation from Step 1 (y = 2x — 6) and substitute 2x — 6 wherever you see y written in the
OTHER equation
Equation 2: 2x + 2y = —9 < Write 2x — 6 instead of y

2x +2(2x —6) = —9 <& Distribute
2x +4x —12=-9 & Solve forx

6x —12=-9
+12 +12

6x =3

6 6

1

X ==

2

Step 3: Substitute Zin for x and solve for y. It does not matter which equation you use, but it will be easier to

use the equation from step 1 since we already have y =
1
y=2x—6 9y=2(5)—6 2y=1-6 2y=-5

Solution: (% —5)



Practice

Solve each system using the substitution method.

1 {x—3y=—1
) y = —4x + 22

3 —-3x—4y =0
'){x=—2y+2

5 y=—4x—-1
'){y=8x+11

7 {x=—4y+4
) x=2y+10

5 {—3x—4y=12
) y=-2x—3

2x+y=-2
4'){5x—2y=4

3x + 2y = 10
6.){ x=yy

8 {12x+3y=6
) y=—4x+19



Unit 6 Objective 4 Remediation

Solving a System of Equations using Elimination Method

Steps for Elimination

1. Multiply one or both of the equations by a number so that the coefficients of one of the variables are
opposites

2. Add the equations from step 1 together. Combining the equations will eliminate one of the
variables.

3. Solve for the remaining variable.

4. Substitute the value from step 3 into the one of the original equations and find the value of the
second variable.

Example

) . o 9% +2y=0
Solve the following system using Elimination: {Bx _5y =17
Step 1: We need to use multiplication to get the same number, different signs in front of one of the variable.
In this example, we will multiply the bottom equation by —3 so the x will then have —9 in front of it and will
eliminate with the 9x in the first equation.

9 +2y=0 . . .
{Sx 5y =17 (=3) < Multiply ALL terms in the bottom equation by —3
New Equation: —9x + 15y = =51
1°t Equation (did not change): 9%+ 2y =0

Step 2 and 3: ADD the equations together. The x variables will get eliminated. Then solve for y.

—9x + 15y = =51
+ 9x+2y = 0
17y = =51 < Solve fory

y=-3
Step 4: Substitute —3 in for y and solve for x. It does not matter which equation you use.
Equation 1: 9x + 2y = 0 < substitute —3 in for y and solve for x

9% +2(-3)=0 29x—6=0

+6 +6
9x =6
9 9

2

x ==

3

Solution: (% —3)



Special Cases

When you add the two equations together and BOTH variables get eliminated, the problem is a special case
and the answer is either No Solution or All Points on the Line (Infinite).

No Solution All Points on the Line (Infinite Solutions)
x—y:—z 2x+y=—5
-x+y=5 —2x—y=5
0 = 3 <€ This is a FALSE statement 0 = 0 € This is a TRUE statement
The answer is NO SOLUTION The answer is ALL POINTS ON THE LINE

Practice

Solve each system using the Elimination Method.

1 x+y=-3 5 —2x—-y=11
'){x—4y=—8 '){—Zx—3y=21
3 {3x+4y=10 4 {4x+2y=—20

Neéx +8y = —20 Nax -3y = -10



)|

o

o)

2x—4y =6
dx —y =

x—4y =-20
4x — 3y = —28

3x —5y =13
—4x — 2y =26

6 3x+4y =—4
'){ 2x—y=1

8 { x—3y=8
N—2x + 6y = 10

3x—4y =16
10 {—Zx _3y=12






Unit 6 Objective 5 Remediation

Applications of Systems of Equations

Steps in Writing and Solving a System of Equations:
e Read and underline key words
e |dentify the variables (Let x =; y =)
*  Write a system of equations that models the problem, using keywords from the problem
Remember: 2 Unknowns means 2 Equations
e Solve the system — use either Elimination or Substitution
e Write a sentence interpreting your answer

Practice

1.) lan bought flowers and candy boxes. Flowers costs $9 each while candy boxes are only $8 each. If lan
spent $168 and only ended up with 19 items, how many flowers and candy boxes did lan buy?

Letx =
y:

Equations (you need 2 equations since you have 2 unknowns)

Solution: Interpret Answer:

2.) Kate asked a bank teller to cash a $180 check using only $20 bills and $10 bills. The teller gave her a total
of 11 bills. How many of each bill was Kate given?

Letx =
y:

Equations:

Solution: Interpret Answer:




3.) Sam bought Tshirts and socks. Tshirts are on sale at $10 each while socks are currently sold at $8 each. If
Sam spent $172 and only got 20 items, how many Tshirts and socks did Sam buy?

Letx =
y:

Equations:

Solution: Interpret Answer:

4.) A caterer’s total cost for catering a party includes a fixed cost, which is the same for every party. In
addition the caterer charges a certain amount for each guest. If it costs $300 to serve 25 guests and $420 to
serve 40 guests, find the fixed cost and the cost per guest.

Letx =
y:

Equations:

Solution: Interpret Answer:




5.) If you buy six pens and one mechanical pencil, you'll get only $1 change from your $10 bill. But if you buy
four pens and two mechanical pencils, you’ll get $2 change. How much does each pen and each pencil cost?

Letx =
y:

Equations:

Solution: Interpret Answer:

6.) A car rental agency charges a daily fee plus a cost per mile. If a car driven 40 miles in one day cost $28,
and the same car driven 100 miles in one day cost $37, what are the daily fee and the cost per mile?

Let x =
y:

Equations:

Solution: Interpret Answer:







Unit 7

Systems of Inequalities

Objectives:

. Graph the solution to a linear inequality
. Solve a system of inequalities by graphing

|
2
3.
4
5

Determine whether a point is a solution to a system of inequalities

. Write a linear inequality or system of linear inequalities given a graph

. Write, solve, and interpret systems of inequalities in the context of problem

situations

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5






Unit 7 Objective 1 Remediation

Graphing a Linear Inequality in Two Variables

Steps to Graph an Inequality

* Write the inequality in slope-intercept form (get y by itself)

% Graph the line y = mx + b as a solid or dashed line
o Solid if the inequality symbol is < or >
| if the inequality symbol is < or >

* Pick a point to test that is NOT on the line
o If the point creates a true statement, shade the side of the line where the point is located

o Ifthe point creates a £alse statement, shade the OTHER side of the line where the point is
not

Example

Graph the solution of the inequality 5x + 2y < 6.

' ' ‘ 5x+2y<6
e Change the |.nequaI|.ty to qupe—mtercept 2y < —5x+6
form by solving the inequality for y
i . N 2y —5x+6
® Remember to switch the inequality sign if LAY Jtt—
multiplying or dividing by a negative 2 5 2
number <——x+3
Y<73
e Graphtheliney = —gx +3
® Draw a dashed line because the inequality y
sign is < v
\‘ 5
%
3
\
2|\
\\
. . . . 0,0 |\
® Pick a point to test that is not on the line -
-6 -5 -4 -8 -2 -l 1‘ 2 3 4 5 6 x
® Pick (0,0) and substitute it into the original . \
inequality 2 L
5(0) +2(0) < 6 s \
0<6 4 \
e This is true so shade the side of the line of 5 A
where (0, 0) is located s \




Graph the solution of the following inequalities.

1. y<x+3

3. y<§x+2

SN
<
IA
G N
=

6. 3x < -6




7. 5x—-3y< -9

9. x+2y<-8

11. 4y > -8

8. 3x+2y>8

10. 4x+y =0

12. x =3







Unit 7 Objective 2 Remediation

Graphing Systems of Linear Inequalities

Steps in Graphing Linear Inequalities

Before you begin, make sure both inequalities are in slope-intercept form. If they are not, change them to
this form by solving for y.

Step #1: Graph the first inequality; select a point to help determine which side to shade.
Step #2: Graph the second inequality; select a point to help determine which side to shade.
*Remember to shade in a different color or in a different direction
Step #3: Determine the solution. The solution is the intersection of the shaded area.
Step #4: Check a point — select a point that is in the solution and make sure it is a solution
to all of the inequalities in the system.

Example
Graph the system of inequalities: y=zx
raph the system of inequalities: {y S x+1
Graph the first inequality: y > x Graph the second inequality: y > —x+1
e The line is solid because the inequality e The line is solid because the inequality
sign is = sign is =
® The shading is above the line ® The shading is above the line

RN T S )
Now s o o

5 5 4 3 2 - T2 3 4 5 6 5 b5 4 B3 2 2 3 4 5 6

- S SENE - N
S SENE -

The solutions to the system are in the overlap of the two graphs’ shading.
y

6

IS

N




Graph the following systems of inequalities.

{ny+2
y > 2x
y
6 5 -4 3 2
3 {y32x+1
y<x-—1
y
6 5 -4 <) 2
5 {3x+y>6
x+y<4
y

-6 5 -4 8 2
2
< =
4, { y=3x
2x—y =3
-6 5 4 -3 2




{

2x -3y <3
x+y<5

11 {

x+y<1
x=1

-

2x +3y <15
%—2y>0y

6

5

0.

x+y>0
y>4

|

y=Xx
y>0







Unit 7 Objective 3 Remediation

Determining if a Point is a Solution to a System of Linear Inequalities

Example 1

Example 2

Is the point located in the overlap of the
shading?

2 If yes, then the point is a solution.

2 If no, then the point is not a solution.

y
N,

-10
Is the point (1, —1) a solution?

YES, it is located in the overlap.

Is the point (—3,—5) a solution?
NO, it is not located in the overlap.

Does the point make both inequalities
true when we plug in the x and y values?

2 If yes, then the point is a solution.

2 If no, then the point is not a solution.

Is the point (3, —1) a solution of the system

{y>—2x—1 5
x—3y<4

Plug in the values for x and y and see if you get a
true statement. Do this for both inequalities.

-1>-23)-1
-1>-7
True
3-3(-1)<4
6<4
False

The point (3, —1) is NOT a solution because it does
not make both inequalities true.

Try These

State whether or not the following points are solutions of the system of inequalities shown.

1. (0,0
2. (0,-2)
3. (3,-3)
4. (-2,2)
5. (4,0)
6. (—8,-3)
7. (=3,2)

8. (5,-6)

(]

i
i
=
=




Try These

Determine whether the point is a solution of the given system of inequalities.

9.

10.

11.

12.

13.

14.

y>3x+2

Is the point (3, 15) a solution to the system {y < 4x — 3

x>2y—3

Is the point (1, —2) a solution to the system {y <—x+6

3y—2x>5

Is the point (—3, —5) a solution to the system { Ax+y>9

2x—7y <5

Is the point (1, 3) a solution to the system {11 >3y +x

yS§x+3

Is the point (—4, —3) a solution to the system {
x+y<1

yZ%x—Z

Is the point (—6, 8) a solution to the system {
5x +3y > -6

10.

11.

12.

13.

14.



Unit 7 Objective 4 Remediation

Writing a System of Inequalities from a Graph

Example: Write the system of inequalities given the graph. y
. 10 .
LINE 1: Find the slope and y-intercept of line 1. Line 1 ; Line 2
™ /
m= —% andb =3 ’
5 d
Write the inequality y ? —%x +3 I,'
’
Pick a point in the overlap to test. I'll pick (0, 0).
AN
1 5
0 ? _E(O)+3 -10 5 ’I 5\0x
/
Put in the symbol that will make the statement true. 7
’
5
So, inequality #1is y < —%x +3 U"
LINE 2: Find the slope and y-intercept of line 2. 7
m=2andb=—-6 -10
Write the inequality y ? 2x—6
Pick a point in the overlap to test. I'll pick (0, 0). <_l..3
0 ? 2(0) -6 Answer: {y - 2
0 y>2x—6
Put in the symbol that will make the statement true.
So, inequality #2isy > 2x — 6
Try These
Write the system of inequalities given the graph.
1. y 2. y
\ 10 4 10
\ /
\ ] Sso
\\
5 / \\~~ 5
\ e
\~~
\ / She
~o »7
\~ '/
10 -5 5 10 10 -5 :5;,,:\ 10
/' ~\
r"
5 547
V.
,'
‘/
of




y
0 5
—
5
9
0
U
Y
10.
%}
4
5
5
o)

(=)

0
~
-1 -5 5
5
5
0
0
y
10
0
-1 -5 5
10




Unit 7 Objective 5 Remediation

Write, Solve and Interpret a System of Linear Inequalities

Steps to Writing and Solving a System of Linear Inequalities

1. Read the problem and underline important information.

2. Identify the variables and define the unknowns they will represent.

3. Write two inequalities. The inequalities x = 0 and y = 0 should also be written.

4. Graph the two inequalities and shade the intersection.

5. Find a solution (point) that lies in the intersection and write your answer in a complete sentence.
Example

Wildcat Toyz is a small toy company that specializes in toy cars and toy trucks. The people at Wildcat Toyz are
confident they can sell all the toy cars and trucks they made. But there are two constraints that limit their
production today:
Wheels: Each car needs 4 wheels. Each truck needs 6 wheels.
Wildcat Toys has no more than 360 wheels in stock
Seats: Each car needs 2 seats. Each truck needs 1 seat.
Wildcat Toys has no more than 100 seats in stock.

Write a system of inequalities to determine the possible production of cars and trucks at Wildcat Toyz.

Let x = number of cars Inequality #1: 4x + 6y < 360
Let y = number of trucks Inequality #2: 2x +y <100
Inequality #3: x>0
Inequality #4: y >0

Graph the inequalities. The solution is the overlap Give one possible combination of cars and trucks

of the shading. that Wildcat Toyz can produce today.
Vg Pick any point in the overlap of the shading.
10 \ Possible answers are...
90
80 e (20,20) — 20 Carsand 20 Trucks
2 70
= 60 e (30,10) — 30 Carsand 10 Trucks
Hé 50
3; 10 e (10,50) — 10 Cars and 50 Trucks
Z a2
»0 e (0,60) — 0Carsand 60 Trucks
10 RS
X

0 10 20 30 40 50 60 70 80 90 100:
Number of Cars




Write the inequalities that would model each situation and solve.

1. You are fishing in a lake for salmon and trout. You can sell the salmon for $3 each and trout for $5
each. Regulations say that you can’t catch more than 15 fish a day, and you can’t catch more than
S55 of fish a day. Write and solve a system of inequalities representing the amount of fish you could
catch a day.

Letx =

Lety

Inequalities:

16
15
14
13
12
11

10

Give one solution that would satisfy this situation:



2. You are shopping for baseballs and tennis balls at a sports store. Each baseball costs $3 and each
tennis ball costs $2. You want to buy not fewer than 45 baseballs and tennis balls altogether, and you
have a $100 budget. Write and solve a system of inequalities representing the number of balls you
could buy.

Letx =
Lety =

Inequalities:

60
55
50
45
40
35
30
25
20
15

10

Give one solution that would satisfy this situation:



3. You are shopping for notebooks and pens at an office supply store. Each notebook costs $4 and each
pack of pens costs $2. You don’t want to buy more than 20 notebooks and pens together, and you
have a $50 budget. Write and solve a system of inequalities representing the number of office
supplies you could buy.

Letx =
Lety =

Inequalities:

YA

30

25

20

15

10

N 4

10 12 14 16 18 20 22 24

A
N
N
[}
o0}

Give one solution that would satisfy this situation:



Unit 8

Exponents

Objectives:

Simplify exponents using the Product-of-Powers Property
Simplify exponents using the Power-of-a-Power Property
Simplify exponents using the Power-of-a-Product Property
Simplify exponents using the Quotient-of-Powers Property
Simplify exponents using the Power-of-a-Quotient Property
Simplify exponents using the Zero Exponent Property
Simplify exponents using the Negative Exponent Property

®© N R D=

Simplify exponents using multiple properties

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5 6 7 8






Unit 8 Objective 1 Remediation

Product of Powers Property

m

a .al’l:am-l-

When multiplying the same base, we ADD the exponents and the base stays the same.

n

Examples
1 x(xs): x1+5 :xé
2 5. m4 -n3 -m2 — m4+2n1+3 — m6n4

3. 4.4 =4"=4 =064
4. (54°)(2a°)=5"2a*" =10a"

Try These
1. 43-4° 2. 75-7
3. a*-a? 4. y8(y)
5. (k) (k) (k) 6. (m*n)(mn*)
7. (3b")(-2b) 8. (9°k*)(g"k?)
9. —5x3(-3x%) 10. (st)(sv)(tw)

11. (rt)) (r3s) (t%s>) 12. (8mp°) (2m3p3)(mp)






Unit 8 Objective 2 Remediation

Power of a Power Property
my\n mn
(a”) =a

To raise a power to a power, multiply the exponents. If there is a coefficient, don’t forget to take
that to the power.

Examples

1. (x2y4)3 = xy* = xOy
2. (3w*) =3*w' =o'

3. (-2a%°) = (-2) a¥'b** = —8a’"

Try These
1. (=x°)* 1.
2. (=x*) 2
3. (mn*)* 3
4 (x2y3)5 4
5. (3c*)? 5
6. (=2a°)* 6
7. (5a'p?) 7
8. (—4y'z) 8
9. (2d*¢*) 9

10. (—3pqr2 )4 10.






Unit 8 Objective 3 Remediation

(ab)" =a"b"

When taking a product to a power, each factor gets raised to the power. If there is a coefficient,
don’t forget to take that to the power.

Examples

1. (xy)3 =x’y’
2. (2w)' =2*w* =16w*
3. (=3ab)’ =(-3)" a’b* =9a’b’

Try These
1. (ab)’ 1.
2 (xy)8 2
3. (-2g) 3
4 (5xy)2 4
5. (=3p)" 5
6. (—mnp) 6
7. (6bc)’ 7
8. (-3k)’ 8
9. (9abc)’ 9

10. (—2h) 10.







Unit 8 Objective 4 Remediation

Quotient of Powers Property

When dividing the same bases, subtract the exponents. If there are coefficients, divide them.

Examples

6

1 2—4=5"-4_52=25

2 x_j: 9-7 :X2
X
24m’n® 24 o, i, .

3. 5 2=—6-m_n_ =—4m’n

Try These

87

1 8_4 1
315

2. 37 2
12

. & ;
kS

4 F 4
x6y4

5 o 5
Xy

6 18m°n® 6

. 6mn '

7 36a°b’c! v
—9a°b’ '
_1 6 9

g, —1oP4d 8.







Unit 8 Objective 5 Remediation

Power of a Quotient Property

When taking a fraction to a power, take the numerator (top) to the power and the denominator
(bottom) to the power.

Examples

L (2) 22l1e
3 3t 8l
2 2
X X
2 —j =—2
y y
3 —EJS—(_”Y_—M
3 3’ 27
Try These
2
1 éj 1
2
2
2 —éj 2
7
6
3, —fj 3
y
3
4 ij 4
n
3
5 —gj 5
b
3
6 ﬂj 6
5






Unit 8 Objective 6 Remediation

Zero Exponent Property

0
a =1

Anything (except 0) to the zero power is 1.

Examples
1. 8 =1
2. x'=1
3. 2n°=2-1=2
4. —6p°¢ =-6-1-¢° =—64°

Try These
1. (-5) 1
2. m’ 2
3. 78° 3
4, -p° 4
5. 5°a°p° 5.
6. 4x°y’z 6
7. 9°x 7







Unit 8 Objective 7 Remediation

Negative Exponent Property

A negative exponent represents the reciprocal of a number or variable. It does NOT make a number
or variable negative.

Examples
152t L
5 25
1

-6

2 X = ?
5
3. m'n = m_7
n
4, 4x7° = i
JE
Try These

1. (-3)° 1
2. 47 2
3. m™® 3
4. -5p™ 4
5. x7y’ 5
6. 1p°q® 6

1
7. — 7

y

J-3
8 = 8
9 1







Summary of the

Exponent Properties

Quotient of Powers

Unit 8 Objective 8 Remediation

Product of Powers

Power of a Power

Power of a Product

mn m-n
(a") =a

(ab)n =a"b"

Power of a Quotient

Zero Exponent

Negative Exponent

n
a a”

a” b) b a"

By combining properties, simplify and write each expression with positive exponents only.

1. (—4y?) Gyjz 1.

2 (—mn2)6 2
3 (—3)@72)(2)(3)3 3
4. (-5a°b)(-ab®) 4
5 (2x3y2)4(2x2)2 5
4
6. (ij 6
b
2
7 (‘fj ;
8
4n’ ’
. (2) 8
2 2
9. —12gh 9
4n’



10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

xOyZZ—S

—15v°w?

25v"w°

(-3a'p?)’ (<7a°b)’

14m™

2m

(3x‘2 y_1 )3

18x y?

10(—4a’b)’

24°b*

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.




Unit 9

Radical Expressions

Objectives:
1. Simplify a radical expression (without variables)
2. Add and/or Subtract radicals (without having to simplify first)
3. Multiply radicals (without variables)

4. Simplify radical expression by rationalizing the denominator

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4






Unit 9 Objective 1 Remediation

Simplifying Square Roots

Simplifying a square root of a whole number means finding an equivalent expression with the smallest
possible number under the radical sign. This is called writing the number in simplest radical form.

To write a square root in simplest radical form we first find the largest possible square factor of the number
under the radical sign. Then we use the Product property.

Product Property of Square Roots

The Product rule states that we can break the square root a number into the square root of product of two
factors.

Jab =~a b

Example One

Simplify V108

Look for the largest possible perfect square that will divide evenly into 108. 4, 9 and 36 are perfect
squares that divide evenly into 108, but 36 is the largest.

V108 =36-V3 = 6V3

The simplest radical form of v108 = 6v/3.

Example Two

Simplify V192

Look for the largest possible perfect square that will divide evenly into 192. 4, 16 and 64 are perfect
squares that divide evenly into 192, but 64 is the largest.

V192 = V64 -3 = 8V3

The simplest radical form of V192 = 8+/3.



Practice

1.) V45

4.) V144

7.) 518

10.) 4v/80

13.) —7V40

16.) 3V175

2.) V98

5.) V200

8.) 3v28

11.) 3v27

14)) —8V121

17.) 5v108

3.) V125
6.) V72

9.) 8V128
12.) —3/54
15.) —4+/24

18.) 2v500



Unit 9 Objective 2 Remediation

Addition or Subtraction of Radical Expressions

1. To add or to subtract radicals, the radicals must be exactly the same. The
radicand and the index must be exactly the same.

2. The numerical coefficients are then added or subtracted. The radical part
stays the same.

Ex. 4V2+2V2=6V2
Ex. —44/5+ 25 = —-2/5
Ex. 5V7—7V5—2V7=3V7-7V5

Practice
1. 6v3 — 83 = 2. —-3V5 -5 =
3. 8V2 +4V2 = 4, 2N7 —NT =
5. —2V11 + 4V11 + V12 =

6. 8 +2v7 — 3V6 — 5V7 =_
7. 2V3—-7VIT+2VI1+4V3 =_
8. —V10+8V15+2Vi5-6Vi0=
9. 9v11 + 5v5 — 8V11 + 3v11

10. —10V2 + 4V2 + 8V7 =7

11. 7V17 + 615 — 4415 — 817 =
12. —12V3—-4V3+3V5+7 =
13. V24 —2V6+4—+49 =

14. —2+4+5V/8—-4/18+4+9 =






Unit 9 Objective 3 Remediation

Multiplying Radicals

1. Multiply the numerical coefficients together and multiply the radicands
together.
2. Simplify the new radicand.

Ex. 4/3:5V7 = 4-5-3 -7 = 20V21

Ex. 2V10-8V2=2-8-V10-vV2=16-v20=16V4-+5
=16-2- V5=32V5

Ex.  (2V5) =(2v5)-(2v5) = 4-v25 = 4-5 =20

Practice
1. V211 = 2. V57 =
3. V8v6 =_ 4. 3v6- 414 -
5. 5V10-13V15 = 6. —3v5- 735 =

7. (7V5)° - 8. (-mv1I) -



9. (2v17)° - 10. 2(v100)° —

11.V3(V5 ++3) = 12. V6(V2-+3) =

13.V7(V2 - V14) = 14. V11(V22++33)=
15.V5(V8 +V12) = — 16.V8(V2-B) =

17.v2(V/6 +V8) = 18.V13(vV2-V8)=__



Unit 9 Objective 4 Remediation

Simplify Radical Expressions by Rationalizing the Denominator:

1. If there is more than one radical sign, put the numerator and denominator
under one radical sign and reduce the fraction, if possible. If there is one
radical sign, reduce the fraction, if possible.

2. Split the radical into two separate radicals.

3. Look at the denominator. What does the denominator need to be multiplied
by to create a perfect square in the denominator?

4. Multiply the numerator and denominator by this term as a radical.

5. Simplify the numerator and the denominator by pulling out the perfect square
factor.

6. Double check to see if the fraction remaining can be reduced. Remember the
values under the radical sign can be reduced together and the values in front
of the radical sign can be reduced together.

EX. \/?=\/ﬁ=5

vie _ [16 _ 7
Ex. N 4—\/1—

Ex 4 _ 4 VB_43_ 43
) V3 V3 V3 V9 3
Ex 3_Y3.V5_ V15 _ V15
: 5 5 V5 V25 5

Note that the last two examples CANNOT be reduced because one
factor is under the radical sign and one factor is not under the radical
sign.



Practice

V24

1,2 =

3

»
lS
I

10.

sl

ul |

2l

Sz

SR

|
o



Unit 10

Operations with Polynomials

Objectives:

© % N L

. Classify a polynomial by degree and/or number of terms

. Add polynomial expressions and express answer in simplest form

|
2
3.
4

Subtract polynomial expressions and express answer in simplest form

. Multiply polynomial expression by a monomial and express answer in simplest

form

Multiply two binomials and express answer in simplest form
Multiply binomial by a trinomial and express answer in simplest form
Use multiple operations to simplify a polynomial

Find the GCF of monomials

. Find the LCM of monomials

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5 6 7 8 9






Unit 10 Objective 1 Remediation

Naming a Polynomial

Highest Degree Number of Terms
Constant 0 Monomial 1
Linear 1 Binomial 2
Quadratic 2 Trinomial 3
Cubic 3 Polynomial 4 or more
nh degree n

Name each polynomial by degree and number of terms.

4, v+w+x+y+z

5. 3a’ -9

6. 6x'—3x"+x

7. 8

8. m+n

9. p-p’-p°-p

10. 4x* —2xy + y*

11. 7h° - j?

12. lbz
2






Unit 10 Objective 2 Remediation

Adding Polynomials

Adding polynomials is combining like terms. Like terms are terms that have the same variable part
and same exponent.

Example One

Simplify (4x — 8y + 1) + (—x + 5y — 9)

Because we are adding polynomials, we can drop the parentheses and combine the like terms

(4x+—x)+(-8y+5y)+(1+-9)

Answer: 3x—-3y—8

Example Two

Simplify (—2x2 + 3x — 5) + (3x% + 5x — 2)
Because we are adding polynomials, we can drop the parentheses and combine the like terms

(—2x%2+3x3) + (Bx+5x) +(-5-2)

Answer: x2+8x—7

Example Three

Simplify (6a? — ab — 2b?) + (a? + 3ab + 2b?)

Because we are adding polynomials, we can drop the parentheses and combine the like terms
(6a? + a?) + (—ab + 3ab) + (—2b? + 2b?)

Answer: 7a% + 2ab



Try These

N

1. (5a% —2) + (12a% +5) .(-3a*—-a+8)+(7a*+7a—-1)

3. (2a*> —11a — 4) + (—9a? — 2a — 15)

IS8

. (Bx+x%2+6)+ (4+x—3x?)

(o))

5. (3x3 4+ 2x — 3) + (8x3 — 5x — 10)

P -6yR =7+ (4 -y +7)

7. (z3—6z2=7)+ (—4z3—z+7) 8. (2x*+5x2—-13)+ (—7x*—8x2+1)

9. (—5x*+2x3—8x2 —x)+ (x> +8x2—-3x—1)

10. (7y* —4y? +12) + (—8y* + 3y3 + 4y% + y)

11. (3x? — 2xy + 9y?) + (x? — 5xy — 6y?)

12. (—12x% + xy + 2y?) + (—4x% + 9xy — 2y?)



Unit 10 Objective 3 Remediation

Subtracting Polynomials

To subtract polynomials, you must distribute the subtraction sign to all of the terms in the
parenthesis and change the subtraction sign into an addition sign. Next, finish the problem as an
addition problem by combining like terms. Like terms are terms that have the same variable part
and same exponent.

Example One

Simplify (4x — 8y + 1) — (—x + 5y — 9)

Distribute the subtraction sign to all of the terms in the parenthesis and change the subtraction sign
into an addition sign.

(4x — 8y + I(—-)(—x + 5y —9)
(4x—8y+1)+ (+x—5y+9)
(4x+x)+(—8y—-5y)+(1+9)

Answer: 5x - 13y + 10

Example Two

Simplify (—2x2 4+ 3x — 5) — (3x% 4+ 5x — 2)

Distribute the subtraction sign to all of the terms in the parenthesis and change the subtraction sign
into an addition sign.

(—2x2% 4+ 3x — 5)(-)(3x% + 5x — 2)
(—2x%2+3x—5)+ (—3x%2 —5x + 2)
(—2x%2—=3x3)+(Bx—-5x)+(-5+2)

Answer: —5x2—-2x—-3



Try These

1. (7x+4)—(2x+9)

w

. (—4x? +10) — (6x* —9)

Ul

(=x2+9x—2)— (9x% — 4x + 4)

~N

. (4x3 + 6x% — 8x) — (x3 — 2x% + 12x)

Yo

(et +8x% —1) — (22 —3x3 +x%)

11. (3x2 + 7xy — 2y?) — (x? — 6xy + 2y?)

13. (4x2%y — 3xy?) — (3x%y — 8xy?)

N

. (B3x+12) — (5x —6)

IS

. (2x%2+3x+8)— (x?+5x—1)

(o))

. (Bx?+7x+1)—(8+5x + x?)

(o]

(x4 2x2+5x)—(3x%2—x—-7)

10. (5x* — 2x%) — (3x — 2x% — 4x3 + 6x*)

12. (—x? — 9xy + 5y%) — (4x% — 2xy — y?)

14. (8x? + 3xy — 20y?) — (—4x? + 3xy + 20y?)



Unit 10 Objective 4 Remediation

Multiplying a Monomial and a Polynomial

Example One

Simplify —3(2x + 3y — 2)

Distribute the term in the front of the parenthesis to all of the terms in the parenthesis.
(=3)2x + (—3)3y — (—3)2

Multiply each term by the term in the front.

Answer: —6x—9y+6

Example Two

Simplify 2x2(—2x% + 3x — 5)
Distribute the term in the front of the parenthesis to all of the terms in the parenthesis.
(2x2)(—2x2) + (2x?)3x — (2x2)5

Multiply each term by the term in the front. Multiply the coefficients. Also, remember when you
multiply the same bases, you add the powers.

Answer: —4x* + 6x3 — 10x2

Example Three

Simplify 3ab?(6a? — ab + 7b?)
Distribute the term in the front of the parenthesis to all of the terms in the parenthesis.
(3ab?)6a? — (3ab?)ab + (3ab?)7b?

Multiply each term by the term in the front. Multiply the coefficients. Also, remember when you
multiply the same bases, you add the powers.

Answer: 18a3b? — 3a?b3 + 21ab*



Try These

1. 7(m? +5)

3. 2m(m3 +9)

5.9(4a> —a +2)

7. —4a*(7a* + 15a — 1)

9. x*y(x* — y?)

11. 9xy(2x%y + 9xy — 4xy?)

13. 3cd*(2c* — 5¢?d? — 18d*%)

15. —=9¢7d3(16¢°d? — 5c¢%d>)

2. —3(8m? — 4m)

4. m*(—5m —6)

6. 3a(12 + 5a — a?)

8. 2a3(6a? —2a + 3)

10. —5xy?(—x3y + 4xy3)

12. —x?y?(5x? — 8xy + y?)

14. 8c2d?(3c*d® + 10c3d* + 11)

16. 4c°(3c? — 20cd — 3d?)



Unit 10 Objective 5 Remediation

Multiplying Two Binomials

When multiplying two binomials we use F O I L o remember the steps.

F- Multiply the first terms in each parenthesis
o — Multiply the outside terms :|- These are usually like terms and get added
I- Multiply the inside terms

L- Multiply the last terms

Example One

Multiply: (x +5)(x — 3)

F O I L
x?—3x +5x —15
Add the OX
Answer: x? +2x — 15
Example Two
Multiply: (2x —3)(5x — 1)
F O I L
10x%2 — 2x — 15x + 3
Add the OI
Answer: 10x% —17x + 3
Example Three
Multiply: (3x + 5y)(x + 4y)
F O 1 L

3x% + 12xy + 5xy + 20y?

Add the QI

Answer: 3x% + 17xy + 20y?



Try These

1. (x+4)(x+2)

4. (x+8)(x—2)

7. Qx+4)(x+1)

10. (7x —4)(3x + 2)

13. (2x+1)(9x —5)

16. (5x — 2y)(3x + 4y)

2. (x+7)(x+1)

5 (x—7)(x+4)

8. Bx+7)(x—3)

11. (5x —8)(4x — 4)

14. Bx—y)(Bx —y)

17. (7x + 3y)(x + 2y)

3. (x—6)(x—3)

6. (x—9)(x—2)

9. (4x—-2)(5x—1)

12. 2x+y)(x+ 3y)

15. 2x + y)(4x — 3y)

18. (6x + 6y)(2x — 4y)



Unit 10 Objective 6 Remediation

Multiplying a Binomial and a Trinomial

Remember the distributive property? We use this o multiply polynomials. Let's take a look at
an example...

Multiply (x+3)(2x* —3x+2)

Take each term of the first polynomial and distribute it to each of the terms in the second polynomial.

First, distribute the x. Multiply the x times all of the terms in the second polynomial.

m2)22x3 —3x% +2x

Next, distribute the + 3. Multiply the 3 times all of the terms in the second polynomial.

(xmg:zf ~3x% +2x+6x> ~9x+6

Combine the like terms.

So our answer is (x+3)(2)c2 —3x+2) = |2x

Try This

1. Multiply (x+1)(x* —2x-5)

2. Multiply (x* +3x—8)(2x+5)



Multiply (3x—1)(x* =7x+3)

Multiply (3x> —4x—2)(2x—3)

Multiply (x + 2)(x? — 5x + 4)

Multiply (2x + 5)(x2 — 4x + 3)

Multiply (5x — 1)(—2x2 + 4x — 2)

Multiply (3x + 10)(4 — x + 6x2)

Multiply (2x2 — 3)(4x3 — x% + 7)



Unit 10 Objective 7 Remediation

Use Multiple Operations to Simplify a Polynomial

To do these problems, use the order of operations. The pneumonic PEMDAS will
help you remember what to do.

P - Parentheses are always done first.

E - Exponents are done second.

MD - Multiplication and Division are done third. Do these operations as they are
seen in the problem, reading left to right.

AS - Addition and Subtraction are done last. Do these operations as they are seen
in the problem, reading from left to right.

Ex 2x(x —4) + 4x(2x? — 3) = 2x? — 8x + 8x3 — 12x Eliminate Parentheses.

= 8x3 + 2x% — 20x Add like terms.
Ex 3—8(3x+4)=3—-24x—32 Eliminate Parentheses.
= —24x — 29 Add like terms.

Ex 2(4x —3x?) — 5x(—2x%2 +3x—1) = 8x — 6x? + 10x3 — 15x2 + 5x
Eliminate Parentheses.
= 10x3 — 21x? + 13x Add like terms.

Use the order of operations to simplify each expression.

1. —32x+4) + 2(—5x — 3)

2. 6—2(5x+ 10)

3. 4x(x>—-5x+8)+8x—12

4. 3x—9x(4x —8)



10.

11.

12.

13.

14.

15.

2(3x —4)+3(3Bx?—6x+1)

9x — (7x?> —3x + 8)

5(2x% —6x —10) —4(x>+8x+3) + 3(2x2 —8x + 2)

5x3 — 7x(7x + 10) — 2x2(9x — 11)

x? —4x%(3x +9) + 6x

—3(x%?—4x+7)—7(2x%*+6)

—(6x3 —4x —3) +3x — 4(5x%2 — 8x + 2)

2x(x + 3) — 5x(3 — 2x) + 8x(4x —1)

9-2(x—7)?+8

4x(3x —5x3 — 6) + 7(2x% — 4x)

3x —(Bx—2)(3x+ 1)



Unit 10 Objective 8 Remediation
Find the GCF of Monomials

Example:
Find the GCF of 15x%yz and 24x3y?

Step 1: Find the GCF of the coefficients by listing the factors of each number
15:1,3,5,15
24:1,2,3,4,6,8,12,24

The greatest factor that is in both 15 and 24 is 3.

Step 2: Find the GCF of the variables

® Look to see which variable(s) are in ALL of the terms.
o Inour example x and y are in both terms
o The variable z is not in one of the terms so it is not in the GCF

® Find the smallest exponent of each variable
o The smallest exponent for x is x?
o The smallest exponent for yisy

The GCF of the variables is x2y

Step 3: Combine for GCF
The GCF of the coefficients was 3 and the GCF of the variables is x?y

Thus, the GCF of 15x%yz and 24x3y? is: 3x%y

Try Some:

Find the GCF of each set of monomials.

1.) 20x3y; 35xy? 2.) 7a3b*;, 21a?b?

3.)12x3y?%; 36x? 4.)42a*b® 28ab*



5.) 10xy3z?%; 21x?%y?z 6.) a’b*c3; 8ac®

7.) 16x?; 28x°; 32x3 8.)40a’b; 16a3b3; 32a?

9.) 21x*z?; 24x3y? 10.) 63a3bc3; 36a?b?c; 45ab3c*



Unit 10 Objective 9 Remediation

Find the LCM of Monomials

LCM stands for Least Common Multiple. We are looking for the smallest multiple that the

monomials have in common. A multiple of a number is what you get when you multiply your
number by 1, 2, 3, etc. For example, the multiples of 5 are: 5, 10, 15, 20, 25, etc.

Example:

Find the LCM of 15x%yz and 20x3y?

Step 1: Find the LCM of the coefficients by listing the factors of each number
15: 15, 30, 45, 60, 75, 90, 105, ...
20: 20, 40, 60, 80, 100, ...

The smallest multiple of both 15 and 20 is 60.

Step 2: Find the LCM of the variables

If the variable shows up in any term it is part of the LCM

o Inour example x, y, and z all show up in at least one of the terms
o This means that x, y, and z are all part of the LCM.

® Find the largest exponent of each variable

o The largest exponent for x is x
o The largest exponent for y is y?
o The largest exponent for z is just z.

The LCM of the variables is x3y?2z

Step 3: Combine for LCM
The LCM of the coefficients was 60 and the LCM of the variables is x3y?z

Thus, the LCM of 15x%yz and 20x3y? is: 60x3y?z



Try Some:

Find the LCM of each set of monomials.

1.) 20x3y; 35xy? 2.) 7a3b*; 21a®b?
3.)12x3y?%;, 36x2 4.)42a*b®; 28ab*c
5.) 10xy3z?%; 21x?%y?z 6.) a’b*c3; 8ac®

7.) 16x?%; 28x°yz 8.) 40a’b; 16ab3

9.) 21x%*z?; 24x3y? 10.) 36a%b?c; 45ab?



Unit 11

Factoring Polynomials

Objectives:

1. Factor a polynomial using the GCF

2. Factor a difference of squares

3. Factor a polynomial in the form x? + bx + ¢

4. Factor a polynomial in one step using the different factoring methods from
objectives 2-5

5. Factor a polynomial in two steps where the first step is factoring out the GCF
and the second step is factoring a difference of squares or x? + bx + ¢

6. Simplify a rational algebraic expression

Objectives I must do for Test B: (circle ones you must do)

1 2 3 4 5 6






Unit 11 Objective 1 Remediation

Factoring using GCF

Example:
Factor 3x3 + 27x% + 9x

1.) To factor out the GCF in an expression like the one above, first find the GCF of all of the
expression's terms (like objective 1 in this unit).

The GCF of 3x3,27x?,and 9x is: 3x

2.) Next, write the GCF on the left of a set of parentheses:

3x( )

3.) Next, divide each term from the original expression (3x3 + 27x2 + 9x) by the GCF (3x), then
write it in the parenthesis.

(3x3) + (3x) = x? (27x?) + (3x) = 9x (9x) - (3x) =3

Answer: 3x(x% + 9x + 3)

4.) Check your answer by using the distributive property and multiply each term inside the
parentheses by 3x:

A N N
3x(x? +9x +3) = 3x3 + 27x% + 9x

If you factor 3x3 + 27x2 + 9x your final answer will be 3x(x? + 9x + 3)

Try Some:

Factor each polynomial using the GCF.

1.) 21a® — 14a? 2.) 4x3 + 32x

3.) 10a — 35b + 15 4.)21c3® — 14c



5.)3a% + 6a? — 12a 6.) 10x3 — 5x2 + 20x

7.) 5y3 — 10y% + 15y 8.) 18x3 — 6x? + 24x

9.) 8ab? — 12a%b 10.) 3a%b? + 18ab

11.) 6xy3 — 24xy? — 12xy 12.) 20x2y* + 35x3y3 + 15x*y?



Unit 11 Objective 2 Remediation

Factoring a Difference of Squares

Example:
Factor 4x2% — 25

Step 1: The first step at factoring this is to make sure that the expression is a difference between
squares. Ask yourself the following questions:

Question Answer and Reason
Are there only two terms? Yes, 4x? and 25

Are both terms (4x? and 25) perfect squares? | Yes, 4x? and 25 are both perfect squares
((2x)? = 4x? and 5% = 25)

s the 2" term being subtracted from the first? | Yes, 4x? — 25

Since we answered YES to all 3 questions, we know it is a difference of squares and can write out
our 2 sets of parentheses, one with a plus sign and the other with a minus sign:

C + )0 =)
Step 2: Now find the square root of 4x? (the first term). The square root of the entire term is 2x
since 22 =4 and x - x = x2. Write this term on the left inside of each set of parentheses.

(2x + )2x — )
We will now consider 25. Find the square root of 25, which is 5. So 5 is written on the right inside of
each set of parentheses.

(2x+ 5)(2x - 5)
If you factor 4x? — 25your final answer will be (2x + 5)(2x — 5)

Try Some:

Factor each polynomial.

1.) b?> — 16 2.) f?-81

3.) 36 — x? 4.)9x?% — 16



5.)49n% — 1 6.)4a%? —9

7.)a*—36 8.) 49a? — 25b?

9.) 100 — 121x? 10.) x% — 64y*?

11.) a® + 100 12.) 64 + y?



Unit 11 Objective 3 Remediation

Factoring a Trinomial in the form x? + bx + ¢

If c is Positive If c is Negative
Find 2 numbers that: Find 2 numbers that:
Multiply to ¢ Multiply to ¢
Adduptob Have difference of b
Their signs will be the same Their signs will be different.

Examples:

1.) Factor x> + 9x + 18

c is positive (+15) so we are looking for 2 numbers that multiply to 18 and add up to 9. We
also know that the numbers will have the same sign. Since the b value is positive (9) both
signs will be addition. So we can fill in our parentheses as follows: (x + )(x+ )

Numbers that multiply to 18:
1,18 = add up to 19
2,9 2 adduptoill
3,6 2>addupto9

Since 3 and 6 multiply to 18 and add up to 9, these are the number we need to factor x? + 9x + 18,
so we can fill them in our parentheses that we started above: (x + 3)(x + 6)

If you factor x? + 9x + 18 your final answer will be (x + 3)(x + 6)

2.) Factor x2 — 4x — 12

c is negative (—12) so we are looking for 2 number that multiply to 12 and have a difference of 4.
We also know that the numbers will have different signs. So we can fill in our parentheses as
follows: (x+ )(x— )

Numbers that multiply to 12:

1,12 - have difference of 11

2,6 = have difference of 4

3,4 - have difference of 1
Since 2 and 6 multiply to 12 and have difference of 4, these are the numbers we need to factor
x? — 4x — 12. Since b is negative, the larger number (6) will have the negative sign. So we can fill
in our parentheses as follows: (x + 2)(x — 6)

If you factor x? — 4x — 12 your final answer will be (x + 2)(x — 6)



Try Some:

1.)x2+4x+3 2)a*—-2a-3

3.)c?—-9c+ 14 4.)b% +3b - 10
5)z%2—z-756 6.)n? + 18n + 30
7.) a? —3a — 40 8.) x? — 14x + 45

9.)w? — 19wv — 20v? 10.) a® + 7ab + 6b?



Unit 11 Objective 4 Remediation

Factoring a Polynomial in One Step Using either GCF, Difference of

Squares or Trinomial Factoring in the form x% + bx + ¢

Look for a GCF First

How many terms are in the

ial?
polynomial- )
-~ N
2 Terms 3 Terms
2
Is it a Difference of Squares? x“+bx+c
2 2 _ Find two numbers that
X< — = (x + X —
Y ( y)( Y) multiply to c and add to b
Example One
Factor x> —x — 56
<> Look for a GCF FIRST. Does the polynomial have a GCF? No
<> How many terms does the polynomial have? 3 terms

<> Use trinomial factoring. Find two numbers that multiply to —56 and add to —1.
The numbers are —8 and 7.

Answer: (x—8)(x+7)

Example Two

Factor 9x% — 18x

<> Look for a GCF FIRST. Does the polynomial have a GCF? Yes
<> Determine the GCF and factor it out. The GCF is 9x.

Answer: 9x(x — 2)

Example Three

Factor 4x2% — 81

<> Look for a GCF FIRST. Does the polynomial have a GCF? No
<~ How many terms does the polynomial have? 2 terms
< Is it a difference of squares? Yes

Answer: (2x +9)(2x —9)



Factor the following.

1.

11.

13.

15.

17.

19.

x2 -9
x% +4x —12
x? —81y?

—28x3y? + 7x?y? — 35x

x? — 5xy — 36y?

16 — 25x2

x2+6x+9

49 — x?

x%> —8x — 84

xzyz —x3y3

2y3

10.

12.

14.

16.

18.

20.

144x* — y?

x%>+9x+8

x2 —17x + 72

6x% + 24x

24x* — 8x3

15x*y — 10x3y + 5x2y

x? — 11xy + 30y?

12x3 + 144x% — 36x

169x2 — 16y?

x%2 —12x + 36



Unit 11 Objective 5 Remediation

Factoring a Polynomial in Two Steps, First by GCF and Second as a

Difference of Squares or Trinomial Factoring in the form x? + bx + ¢

Look for GCF FIRST
Factor it out

How many terms are in the

polynomial? )
7~ N
2 Terms 3 Terms
2
Is it a Difference of Squares? x“+bx+c
2 2 _ Find two numbers that
= = (x + %=
Y ( y)( Y) multiply to c and add to b
Example One
Factor 27x3 — 12x
<> Look for a GCF FIRST. Does the polynomial have a GCF? Yes
<> Determine the GCF and factor it out. The GCF is 3x.
3x(9x? — 4)
<> Look inside the parentheses and determine the number of terms. 2 terms
< Is it a difference of squares? Yes
Answer: 3x(3x +2)(3x — 2)
Example Two
Factor 2x*y + 16x3y + 32x2y
<> Look for a GCF FIRST. Does the polynomial have a GCF? Yes

<> Determine the GCF and factor it out. The GCF is 2x2y.
2x%y(x? + 8x + 16)
< Look inside the parentheses and determine the number of terms. 3 terms
<> Use trinomial factoring. Find two numbers that multiply to 16 and add to 8.
The numbers are 4 and 4.

Answer: 2x2y(x + 4)?



Factor the following.

1.

11. x2y3 + 7xy3 — 98y3

2x% — 8xy + 8y?

x3 + 6x%—27x

3x* — 3x3 — 90x?

4x% — 64x + 256

2x3 — 6x% — 56x

13. 6x2 + 36xy + 30y?

15. 81x2 — 9y?

10.

12.

14,

16.

5x% — 20

x3y — 100xy

36y* — 49y2x2

x*y? — 25x2y?

5x% — 20x*

8x3y* — 72xy?

3x%y — 36xy? + 81y3

2x3y + 14x%y — 240xy



Unit 11 Objective 6 Remediation

Simplifying Rational Expressions

Notes

. . . P .
e Arational expression is an expression in the form Py where P and Q are polynomials

and Q # 0.

e A rational expression is in simplest form when the numerator and denominator have no
common factors other than 1 or — 1.

e Be sure to completely factor both numerator and denominator

Examples

6x2—9x
12x2

a.) Simplify

. . 3x(2x—3
e First factor the numerator and denominator: —xizzz )
3x(2x—3) AK(2x-3) > 273
v
12x2 1% 4x
4x

e Cross out common factors:

e Thus, the simplified form is: %

X% +5x+6
x2+6x+8

b.) Simplify

x245x+6 _ (x+3)(x+2)

® First, completely factor the numerator and denominator: =
x%4+6x+8 (x+2)(x+4)

e Cross out common factors: (x+3)m% (*+3)
AD(x+4) T (x+4)
® Thus, the simplified form is: (x+3)
(x+4)
Try Some
1) 71:t7 ) 63nT—+192



4m? 3y+6

3.)

5.)

L 4)——
8m+12m?2 y243y+2
x2-1 x2—6x+9
— 6.) —
xX4+2x+1 xX4=7x+12
2x2+x—-1 x%-1
L T 8.) -
2x2+11x-6 x2+4+11x+10

7.)



