Chapter 1 Review

For the vocabulary section you must know the following terms:

Opposite Rays Intersection Undefined Terms Space Point Congruent Line Ray Midpoint Postulate Collinear points Plane Length **Bisector** Line segment Coplanar Points Angle Acute angle Right angle Obtuse angle Straight angles Congruent angles

Adjacent angles Angle bisector

Use the diagram at the left to answer the following

- 1) name the intersection of plane X and plane Y.
- 2) Line HI intersects plane Y in what point?
- 3) Line NL is contained in which plane(s)?
- 4) Does line MH exist? Explain.
- 5) Name three coplanar points.
- 6) What is another name for Line ML?
- 7) Name two lines that intersect.
- 8) Name three collinear points.

Use the pyramid at the left to answer the following.

- 9) name five planes of the pyramid
- 10) name two planes that intersect in line PW.
- 11) name a line and a plane that intersect in point S
- 12) name three lines that intersect in point T.

Use the given diagram to answer the following questions.

B is the midpoint of AC

- 13) By the segment addition postulate, DB + BE = _____
- 14) If AB = 7, then BC = ____
- 15) If DB = BE then \overrightarrow{BF} is a
- 16) The ray opposite ray BD is

Use the given diagram to answer the following. You can assume that a line that looks straight is straight (line AE and line FD are straight lines).

19) < 2 and < 3 are adjacent. Name their common vertex and side.

- 20) < 1 is adjacent to acute < ____.
- 21) m< DZE = _____°, m< CZD = _____°, m< CZF = _____°
- 22) If \overrightarrow{ZB} bisects < AZC, then m<___ = m<___ = ____°
- 23) m< 1 + m< 2 + m< 3 = _____°
- 24) If m< 3 = 20°, m< 2 = 3x 5, and m< 1 = 2x + 10. then x = _____

For the following statements decide whether they are true or false then state the postulate or theorem that supports your answer.

- 25) Two points can determine two lines.
- 26) A line and a point not on the line determine one plane.
- 27) Any three points lie together in one and only one plane.
- 28) Two intersecting lines determine a plane.
- 29) It is possible for points P and Q to be in plane R but line PQ is not.
- 30) Two planes can intersect at a single point.

Answer Key:

- 1) \overrightarrow{JK} (could be any two letters on that line as well)
- 2) N
- 3) plane X and plane Y (could also be named with any three non-collinear points on those planes)
- 4) yes, any 2 points define a line
- 5) any three non-collinear points on one plane (ex. H, I, L or M, N, J)
- 6) line *n*
- 7) \overrightarrow{HI} and \overrightarrow{JK} or \overrightarrow{JK} and \overrightarrow{ML}
- 8) J, N, L, K or H, N, I
- **9)** $\Box TPS, \Box SPR, \Box WPR, \Box TPW, \Box WTS$
- 10) $\Box TPW$ and $\Box RPW$
- 11) \overrightarrow{ST} and $\square PRS$ or \overrightarrow{RS} and $\square PTS$ or \overrightarrow{PS} and $\square TSR$
- 12) \overrightarrow{PT} , \overrightarrow{ST} , \overrightarrow{WT}
- 13) DE
- 14) 7
- 15) segment bisector
- 16) \overrightarrow{BE}
- 17) x = 6
- 18) x = 3
- 19) common vertex: Z common side: \overrightarrow{ZA}
- 20) < 2
- 21) 20°, 90°, 90°
- 22) m< 1 = m< 2 = 35°
- 23) 90°
- 24) x = 13
- 25) false, postulate 6
- 26) true, theorem 1-2
- 27) false, postulate 7
- 28) true, theorem 1-3
- 29) false, postulate 8
- 30) false, postulate 9