Simplifying Expressions with Opposites and Absolute Value

You find the opposite of a **positive** number by **changing its sign from** + **to** -

You find the opposite of a **negative** number by **changing its sign from** — **to** +

Find the opposite of $5\frac{1}{4}$.

Find the opposite of -10.2.

Answer: The opposite of $5\frac{1}{4}$ is $-5\frac{1}{4}$.

Answer: The opposite of -10.2 is 10.2

Find the opposite of each number.

- 1. 2.33
- 3. $\frac{1}{17}$
- 5. $-\frac{9}{2}$
- 7. $-2\frac{6}{13}$
- 9. 12.56
- 11. -12.56

- 2. 1200
- -0.13
- 6. -1356
- 8. $3\frac{99}{100}$
- 10. -22.7
- 12. $100\frac{1}{2}$

Absolute value is the distance between a number and zero on a number line. Because it is distance, it is a positive value.

We use |bars| to represent absolute value.

Find the absolute value of each number.

- 1. |2.33 |
- 1. |2.00
- 5. $\left| -\frac{9}{2} \right|$

3. $\left| \frac{1}{17} \right|$

- 7. $|-2\frac{6}{13}|$
- 9. |12.56|

- 2. |1200|
- 4. |-0.13|
- 6. | *-* 1356|
- 8. $|3\frac{99}{100}|$
- 10. |-22.7|

11.
$$-12.56$$

12.
$$100\frac{1}{2}$$

When simplifying expressions involving opposites and absolute value, follow order of operations.

1. Simplify -(-12.8)

Answer: 12.8

The opposite of -12.8 is 12.8.

2. Simplify -|24 - 19|

Answer: -5

Perform the subtraction -|5|

The opposite of the absolute value of 5 is -5

3. Simplify $|-2| \cdot |-9|$

Answer: 18

Take the absolute values $2 \cdot 9$

Multiply 18

Try These

1.
$$-|-2.8|$$

2.
$$-|2+9|$$

3.
$$|-5| \cdot |6|$$

4.
$$-(|-2|+|-2|)$$

5.
$$|-2| - |2|$$

6.
$$|2.5| \cdot |2.5|$$

7.
$$|2+8|-|2+3|$$

8.
$$|2+3| \cdot |2+3|$$

9.
$$(2+6)-|6-2|$$

10.
$$-|3+2\cdot 5|$$

11.
$$-|-3| + |-8|$$

12.
$$|6-2|-|-4|$$

13.
$$|-3| + |5-2|$$

14.
$$|-5| + |6| - |-1|$$

15.
$$-|-8+12|+10$$

16.
$$|10 - 13|$$

17.
$$|9-2|-|-7|$$

18.
$$-3|6+2|$$

19.
$$-|2-9|+|-8|$$

20.
$$-|-4(5-2)|$$