Factoring a Trinomial in the form $x^{2}+b x+c$

If c is Positive	If c is Negative
-Find 2 numbers that:	-Find 2 numbers that:
Multiply to c	Multiply to c
Add up to b	Have difference of b
-Their signs will be the same	-Their signs will be different.

Examples:

1.) Factor $x^{2}+9 x+18$

C is positive (+15) so we are looking for 2 numbers that multiply to 18 and add up to 9 . We also know that the numbers will have the same sign. Since the b value is positive (9) both signs will be addition. So we can fill in our parentheses as follows: $(x+)(x+)$

Numbers that multiply to 18 :

$$
\begin{aligned}
& 1,18 \rightarrow \text { add up to } 19 \\
& 2,9 \rightarrow \text { add up to } 11 \\
& 3,6 \rightarrow \text { add up to } 9
\end{aligned}
$$

Since 3 and 6 multiply to 18 and add up to 9 , these are the number we need to factor $x^{2}+9 x+18$, so we can fill them in our parentheses that we started above: $(x+3)(x+6)$

$$
\text { If you factor } x^{2}+9 x+18 \text { your final answer will be }(x+3)(x+6)
$$

2.) Factor $x^{2}-4 x-12$

C is negative (-12) so we are looking for 2 number that multiply to 12 and have a difference of 4 . We also know that the numbers will have different signs. So we can fill in our parentheses as follows: $(x+\quad)(x-)$

Numbers that multiply to 12 :
$1,12 \rightarrow$ have difference of 11
$2,6 \rightarrow$ have difference of 4
$3,4 \rightarrow$ have difference of 1
Since 2 and 6 multiply to 12 and have difference of 4 , these are the numbers we need to factor $x^{2}-4 x-12$. Since b is negative, the larger number (6) will have the negative sign. So we can fill in our parentheses as follows: $(x+2)(x-6)$

If you factor $x^{2}-4 x-12$ your final answer will be $(x+2)(x-6)$

Try Some:

1.) $x^{2}+4 x+3$
2.) $a^{2}-2 a-3$
3.) $c^{2}-9 c+14$
4.) $b^{2}+3 b-10$
5.) $z^{2}-z-56$
6.) $n^{2}+18 n+30$
7.) $a^{2}-3 a-40$
8.) $x^{2}-14 x+45$
9.) $w^{2}-19 w v-20 v^{2}$
10.) $a^{2}+7 a b+6 b^{2}$

