Unit II Objective 3 Remediation
 Factoring Difierence of Squares

Example:

Factor $4 x^{2}-25$

Step 1: The first step at factoring this is to make sure that the expression is a difference between squares. Ask yourself the following questions:

Question	Answer and Reason
Are there only two terms?	Yes, $4 x^{2}$ and 25
Are both terms (4x and 25) perfect squares?	Yes, $4 x^{2}$ and 25 are both perfect squares $\left((2 x)^{2}=4 x^{2}\right.$ and $\left.5^{2}=25\right)$
Is the 2 ${ }^{\text {nd }}$ term being subtracted from the first?	Yes, $4 x^{2}-25$

Since we answered YES to all 3 questions, we know it is a difference of squares and can write out our 2 sets of parentheses, one with a plus sign and the other with a minus sign:

$$
(+)(-\quad)
$$

Step 2: Now find the square root of $4 \mathrm{x}^{2}$ (the first term). The square root of the entire term is 2 x since $2^{2}=4$ and $x \cdot x=x^{2}$. Write this term on the left inside of each set of parentheses.

$$
(2 x+\quad)(2 x-\quad)
$$

We will now consider 25 . Find the square root of 25 , which is 5 . So 5 is written on the right inside of each set of parentheses.

$$
(2 x+5)(2 x-5)
$$

If you factor $4 x^{2}-25 y o u r$ final answer will be $(2 \boldsymbol{x}+5)(2 \boldsymbol{x}-\mathbf{5})$

Try Some:

Factor each polynomial.
1.) $b^{2}-16$
2.) $f^{2}-81$
3.) $36-x^{2}$
4.) $9 x^{2}-16$
5.) $49 n^{2}-1$
6.) $4 a^{2}-9$
7.) $a^{4}-36$
8.) $49 a^{2}-25 b^{2}$
9.) $100-121 x^{2}$
10.) $x^{2}-64 y^{2}$
11.) $a^{2}+100$
12.) $64+y^{2}$

