Example:

Find the GCF of $15 x^{2} y z$ and $24 x^{3} y^{2}$

Step 1: Find the GCF of the coefficients by listing the factors of each number
15: $1,3,5,15$
24: $1,2,3,4,6,8,12,24$

The greatest factor that is in both 15 and 24 is 3 .

Step 2: Find the GCF of the variables

- Look to see which variable(s) are in ALL of the terms.
- In our example x and y are in both terms
- The variable z is not in one of the terms so it is not in the GCF
- Find the smallest exponent of each variable
- The smallest exponent for x is x^{2}
- The smallest exponent for y is y

The GCF of the variables is $x^{2} y$

Step 3: Combine for GCF
The GCF of the coefficients was 3 and the GCF of the variables is $x^{2} y$

Thus, the GCF of $15 x^{2} y z$ and $24 x^{3} y^{2}$ is: $\mathbf{3} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}$

Try Some:

Find the GCF of each set of monomials.
1.) $20 x^{3} y ; 35 x y^{2}$
2.) $7 a^{3} b^{4}$; $21 a^{2} b^{2}$
3.) $12 x^{3} y^{2} ; \quad 36 x^{2}$
4.) $42 a^{4} b^{6}$; $28 a b^{4}$
5.) $10 x y^{3} z^{2} ; \quad 21 x^{2} y^{2} z$
6.) $a^{2} b^{4} c^{3} ; 8 a c^{6}$
7.) $16 x^{2}$; $28 x^{5}$; $32 x^{3}$
8.) $40 a^{2} b ; 16 a^{3} b^{3} ; 32 a^{2}$
9.) $21 x^{4} z^{2} ; 24 x^{3} y^{2}$
10.) $63 a^{3} b c^{3} ; 36 a^{2} b^{2} c ; 45 a b^{3} c^{4}$

