Unit 11 Notes

What is Greatest Common Factor (GCF)?

Integers	The greatest number that is a factor of all the integers
Monomials	The product of their common factors when each monomial is
	expressed in factored form

If two or more integers or monomials have no common factors (GCF = 1) then they are called **relatively prime**.

Examples

Find the GCF of each.

1. 18 and 24

3. $6p^2q^3$ and $9p^5q$

2. $3x^2$ and $9x^3$

4. $12x^3$; $8x^7$ and $24x^2$

	Integers	Variables
What do I look for to find the GCF of		
Monomials?		

Find the GCF of each.

1. $4c^3$ and 8c

1. _____

2. 10b and $25b^5$

2. _____

3. $45a^3b$ and 35a

3. _____

4. $30a^2$ and 13b

4.

5. $7xy^3$ and $15x^2y^2$

5. _____

6. $42ab^2c^3$ and $30a^3b^2c$

6. _____

7. $8a^3b^2$; $14a^2b$; $21a^2b^5$

7. _____

8. $20ax^2$; $32a^3x$ and $40a^6$

8. _____

9. $25p^3qr^6$; $15p^4q^3$ and $65pq^2r^4$

9. _____

10. $28x^3y^5z^2$; $21x^5y^2z$ and $56x^3yz^6$

Factoring by GCF

What is Factoring?

- > Factoring is writing a polynomial expression in terms of its factors
- ➤ We are 'Un-doing' the distributive property
- > WHY do we need to factor? It helps to simplify algebraic fractions and solve polynomial equations

Factoring using the Greatest Common Factor (GCF)

- First, find the GCF of all of the terms in the polynomials (like Objective 1)
- Next, factor that GCF out of each term using division
- > Check: If we use distributive property to multiply, we should go back to the original expression

Examples

Factor each polynomial by finding the GCF.

- 1. $6x^2 + 15x$
- 2. $16y^2 24y + 32$
- 3. $-12a^4 + 24a^2 6a$

4. $5x^3y^2 - 15x^2y - 30xy$

Factor each polynomial by finding the GCF.

1. $3x^2 - 3x$

1. _____

2. $-3x^3 - 33x$

2. _____

3. $15x^2 + 18x$

3. _____

4. $19w^5 - 19w^2$

4. _____

5. $36x^3 - 24x^2 + 8x$

5. _____

6. $2a^4 - 10a^2 + 2a$

6. _____

7. $3x^3 + 10x^2 - x$

7. _____

8. $-10x^6 + 12x^5 - 4x^4$

8. _____

9. $2x^2y^2 - 4x^3y$

9. _____

10. $27ab^3 - 36ab^2 + 18ab$

10._____

11. $8x^4y^2 + 12x^3y^3 - 16x^2y^4$

11._____

12. $36a^5b^3 - 48a^4b^4 + 72a^6b^2$

Factoring a Difference of Squares

Using FOIL, multiply the following.

1.
$$(x-3)(x+3)$$

2.
$$(y+5)(y-5)$$

3.
$$(2w+3)(2w-3)$$

4.
$$(7n-2)(7n+2)$$

5.
$$(4-g)(4+g)$$

6.
$$(a^2-b)(a^2+b)$$

7.
$$(3x+5y)(3x-5y)$$

8.
$$(10m + n^3)(10m - n^3)$$

What do you notice about the two binomials that you are multiplying?

What do you notice about the product of the two binomials?

Factor each polynomial as a difference of squares.

1. $x^2 - 16$

1. _____

2. $p^2 - 144$

2. _____

3. $w^2 - 1$

3. _____

4. $49 - y^2$

4.

5. $25-a^2$

5. _____

6. $4k^2 - 121$

6. _____

7. $x^2y^2 - 1$

7. _____

8. $81x^2 - 16y^2$

8. _____

9. $16r^2 - s^2$

9. _____

10. $9n^2 - 64m^2$

10. _____

First, factor out a GCF and then factor as a difference of squares.

11.
$$2x^3 - 128x$$

11. _____

12.
$$27x^2 - 9$$

12. _____

13.
$$49m^2n^2 - n^4$$

Factoring $x^2 + bx + c$

Multiply each polynomial, using distributive property, and write the answer in standard form.

1.
$$(x+5)(x+4)$$

2.
$$(x+6)(x+1)$$

3.
$$(x-2)(x-4)$$

Can you use the pattern you noticed above to factor $x^2 + 9x + 18$?

Factoring a trinomial in the form $x^2 + bx + c$ or $x^2 - bx + c$

Find 2 numbers that ______

and

Their signs will be _____

Examples

Factor each polynomial completely.

1.
$$x^2 + 10x + 21$$

What are we looking for?

2 Numbers that: add to _____ and multiply to _____

2.
$$x^2 - 7x + 12$$

What are we looking for?

2 Numbers that: add to _____ and multiply to _____

3.
$$x^2 + 8xy + 16y^2$$

What are we looking for?

2 Numbers that: add to ______ and multiply to _____

Factor each polynomial completely.

1. $x^2 + 3x + 2$

1. _____

2. $x^2 - 6x + 5$

2. _____

3. $x^2 - 18x + 81$

3. _____

4. $x^2 + 11x + 30$

4. _____

5. $x^2 - 9x + 18$

5. _____

6. $x^2 + 12xy + 36y^2$

6. _____

7. $x^2 - 16x + 48$

7. _____

8. $x^2 + 27xy + 50y^2$

8. _____

9. $x^2 - 30x + 144$

9. _____

10. $x^2 + 25xy + 24y^2$

Multiply each polynomial, using distributive property, and write your answer in standard form.

1.
$$(x-5)(x+4)$$

2.
$$(x+6)(x-1)$$

3.
$$(x-2)(x+4)$$

Can you use the pattern you notice above to factor $x^2 + 2x - 15$?

Factoring a	trinomial	in	tha	form	v ²	- hr	_ c
ractoring a	trinomiai	m	ıne	iorm	χŢ	- UX	-c

Find 2 numbers that _____

Their signs will be _____

Examples

Factor each polynomial completely.

1.
$$x^2 - x - 12$$

1. $x^2 - x - 12$ What are we looking for?

2 Numbers that: add to _____ and multiply to

2.
$$x^2 + 7x - 8$$

2. $x^2 + 7x - 8$ What are we looking for?

2 Numbers that: add to _____ and multiply to

3.
$$x^2 - 6xy - 16y^2$$

3. $x^2 - 6xy - 16y^2$ What are we looking for?

2 Numbers that: add to _____ and multiply to _____

4.
$$x^2 + xy - 42y^2$$

4. $x^2 + xy - 42y^2$ What are we looking for?

2 Numbers that: add to _____ and multiply to _____

Factor each polynomial completely.

1. $x^2 - x - 2$

1. _____

2. $x^2 + 2x - 3$

2. _____

3. $x^2 - 2x - 35$

3. _____

4. $x^2 + 8x - 20$

4. _____

5. $x^2 - 5x - 24$

5. _____

6. $x^2 + 9x - 36$

6. _____

7. $x^2 - 3xy - 4y^2$

7. _____

8. $x^2 + 4x - 32$

8. _____

9. $x^2 - 11xy - 12y^2$

9. _____

10. $x^2 + 3xy - 72y^2$

Putting it all together...

Factoring $x^2 + bx + c$							
Sign Pattern			Numbers				
If <i>c</i> is positive							
()()	2 numbers that				
()()	add to				
If c is negative			multiply to				
()()					

Try These

Factor each polynomial completely.

1.
$$x^2 + 16x + 28$$

2.
$$y^2 - 4y - 21$$

3.
$$a^2 + 15a - 16$$

4.
$$x^2 - 6x + 9$$

5.
$$m^2 + 19mn + 18n^2$$

6.
$$z^2 - 5z - 12$$

7.
$$a^2 - 3ab - 10b^2$$

8.
$$y^2 + 10y + 25$$

9.
$$x^2 - 16$$
 (Think $x^2 + 0x - 16$)

10.
$$n^2 - n - 20$$

Factoring using Different Methods

This objective is a mix of the different problems you have seen in objectives 2 through 4. If the polynomial cannot be factored, write PRIME.

1.
$$6x^2 - 24x$$

2.
$$x^2 - x - 20$$

3.
$$x^2 - 8x + 16$$

4.
$$x^2 - 9$$

5.
$$x^2 - 9x + 8$$

6.
$$x^2 - 3x - 8$$

7.
$$4x^3y + 16x^2y + 4xy^2$$

8.
$$x^2 - 10x - 24$$

9.
$$49x^2 - 1$$

10.
$$x^2 + 10xy + 24y^2$$

11.
$$x^2 - 100y^2$$

12.
$$x^3 + 5x^2 + x$$

Two-Step Factoring

Difference of Squares
$$x^2 - y^2 = (x + y)(x - y)$$

FOIL Backwards $x^{2} + bxy + y^{2} = (+)(+)$ $x^{2} - bxy + y^{2} = (-)(-)$ $x^{2} + bxy - y^{2} = (+)(-)$ $x^{2} - bxy - y^{2} = (+)(-)$

Examples

Factor completely.

1.
$$4x^3 - 36x$$

2.
$$4x^2 - 12x + 8$$

3.
$$5x^4 - 10x^3 - 75x^2$$

4.
$$3x^3y^2 - 147xy^2$$

Try These

5.
$$2x^2 + 6x + 4$$

6.
$$2x^3 + 8x^2 - 64x$$

7.
$$a^2x^2 - 16a^2$$

8.
$$7x^2 - 14x - 21$$

8. _____

9.
$$x^4 + 3x^2 - 10x^2$$

9. _____

10.
$$4x^2 - 16$$

10. _____

11.
$$9x^2 - 54x + 72$$

11. _____

12.
$$3x^3 - 9x^2 - 54x$$

12. _____

13.
$$5x^2y^3 - 180x$$

13. _____

14.
$$x^4y - 15x^3y + 56x^2y$$

14. _____

15.
$$72y - 2x^2$$