# Remediation Unit 6 Objective 4 Solving a System of Equations using Elimination Method

#### **Steps for Elimination**

- 1. Multiply one or both of the equations by a number so that the coefficients of one of the variables are opposites
- 2. Add the equations from step 1 together. Combining the equations will eliminate one of the variables.
- 3. Solve for the remaining variable.
- 4. Substitute the value from step 3 into the one of the original equations and find the value of the second variable.

#### **Example**

Solve the following system using Elimination:  $\begin{cases} 9x + 2y = 0\\ 3x - 5y = 17 \end{cases}$ 

**Step 1:** We need to use multiplication to get the same number, different signs in front of one of the variable. In this example, we will multiply the bottom equation by -3 so the x will then have -9 in front of it and will eliminate with the 9x in the first equation.

$$\begin{cases} 9x + 2y = 0 \\ 3x - 5y = 17 \end{cases}$$
 (-3) \( \Lefta \) Multiply ALL terms in the bottom equation by -3

New Equation: -9x + 15y = -511<sup>st</sup> Equation (did not change): 9x + 2y = 0

**Step 2 and 3:** ADD the equations together. The x variables will get eliminated. Then solve for y.

$$-9x + 15y = -51$$

$$+ 9x + 2y = 0$$

$$17y = -51 \leftarrow \text{Solve for y}$$

$$y = -3$$

Step 4: Substitute -3 in for y and solve for x. It does not matter which equation you use.

Equation 1: 9x + 2y = 0  $\leftarrow$  substitute -3 in for y and solve for x

$$9x + 2(-3) = 0 \Rightarrow 9x - 6 = 0 +6 + 6 9x = 6 9 9 x = \frac{2}{3}$$

Solution:  $\left(\frac{2}{3}, -3\right)$ 

## **Special Cases**

When you add the two equations together and BOTH variables get eliminated, the problem is a special case and the answer is either No Solution or All Points on the Line (Infinite).

| No Solution                                  | All Points on the Line (Infinite Solutions)   |
|----------------------------------------------|-----------------------------------------------|
| x - y = -2                                   | 2x + y = -5                                   |
| -x + y = 5                                   | -2x - y = 5                                   |
| $0 = 3 \leftarrow$ This is a FALSE statement | $0 = 0$ $\leftarrow$ This is a TRUE statement |
| The answer is NO SOLUTION                    | The answer is ALL POINTS ON THE LINE          |

### **Practice**

Solve each system using the Elimination Method.

1.) 
$$\begin{cases} x + y = -3 \\ x - 4y = -8 \end{cases}$$

$$2.) \begin{cases} -2x - y = 11 \\ -2x - 3y = 21 \end{cases}$$

$$3.) \begin{cases} 3x + 4y = 10 \\ 6x + 8y = -20 \end{cases}$$

$$4.) \begin{cases} 4x + 2y = -20 \\ 4x - 3y = -10 \end{cases}$$

$$5.) \begin{cases} 2x - 4y = 6 \\ 4x - y = 5 \end{cases}$$

$$6.) \begin{cases} 3x + 4y = -4 \\ 2x - y = 1 \end{cases}$$

7.) 
$$\begin{cases} x - 4y = -20 \\ 4x - 3y = -28 \end{cases}$$

$$8.) \begin{cases} x - 3y = 8 \\ -2x + 6y = 10 \end{cases}$$

$$9.) \begin{cases} 3x - 5y = 13 \\ -4x - 2y = 26 \end{cases}$$

$$10.) \begin{cases} 3x - 4y = 16 \\ -2x - 3y = 12 \end{cases}$$