Determining Whether a Point is a Solution to a System of Equations

How to test a point:

- To tell whether a point is a solution to a system, substitute the ordered pair into EACH equation for x and y.
- If the ordered pair satisfies BOTH equations, then it is a solution to the system.
- If the ordered pair does not work for either of the equations, it is NOT a solution.

Example

Is $(-1, 6)$ a solution to the system:	(x+7=y)
	(-4x + 2) = y

Substitute in values for both equations: x = -1 and y = 6.

$\frac{\text{Equation 1:}}{x+7=y}$	$\frac{\text{Equation 2:}}{-4x + 2} = y$
-1+7 ? 6	-4(-1)+2 ? 6
6 = 6	4+2 ? 6

Point works for Equation 1 $6 = 6 \rightarrow$ point works for Equation 2

Since the point makes BOTH equations true, the point (-1, 6) IS a solution to the system.

Try These

Determine if the point is a solution to the system. You must show work to support your answer.

1.) Is (-5, -3) a solution to the system:

2.) Is (-4,-2) a solution to the system:

y = -2(x - 4) - 7y = (x - 4) - 4 y = -3(x+1) + 34x + 2y = 2

3.) Is (3,1) a solution to the system: y = -2(x - 2) + 3y = -3x + 10 4.) Is (-3,-11) a solution to the system: -4x + y = 1 y = x - 2

5.) Is (3,-10) a solution to the system: y = -4x - 23x + y = -1

6.) Is (1,-3) a solution to the system:

$$y = 3(x + 2) - 8$$

 $y = 2(x + 2) - 7$

7.) Is (3,3) a solution to the system: y = 4(x - 3) + 3y = -3x + 12 8.) Is (4,4) a solution to the system: y = 3(x - 5) + 7-x + y = 0

9.) Is (4,-2) a solution to the system: y = -3(x - 2) + 5y = 2(x - 2) 10.) Is (-6,-3) a solution to the system: 4x - 2y = -18y = 3x + 12