Review for Mean, Median and Mode

Match the terms with the correct definition.

1) Interquartile range	A) an unusually small or large value in a data set
2) mean	B) a measure calculated using population values
3) median	C) the difference between the largest and the smallest number
4) mode	D) the measure at the center of the data set dividing it into equal halves
5) midrange	E) the difference between the upper and lower quartiles
6) outlier	F) a measure calculated using sample values
7) range	$\mathrm{G})$ the average of a data set
8) statistic	H) the value in a data set that comes up most often
9) parameter	I) half the sum of the minimum value and the maximum value

Match the value to its symbol

1) sum	A) Med
2) mean	B) R
3) median	C) Sx
4) midrange	D) Σ
6) standard deviation	E) MR
F) \bar{X}	

Determine whether each statement is true or false. If the statement is false, fix it.

1) A single extremely large value can affect the median more than the mean.
2) Half of all the values will fall above the mode and half will fall below the mode
3) The range and midrange are both measures of variation

Multiple choice

1) What is the value of the mode when all values in a data set are different?
a) zero
b) one
c) there is no mode
2) Which is not part of the five-number summary?
a) Q_{1}
b) median
c) minimum
d) mean
3) If the data is skewed right, in what order do the measures of center fall?
a) mean, median, mode
b) mode, median, mean
c) mean, mode, median
d) median, mean, mode

Solve the following.

1) Below are the costs of 10 electric smooth top ranges rated very good or excellent by

Consumer Reports in August 2002.
\$850 \$900 \$1400 \$1200 \$1050 \$1000 \$750 \$1250 \$1050 \$565
a) Find the mean price
d) Find the standard deviation
b) Find the median price
e) Find the range
c) Find the mode price
f) Find the midrange
2) A clerk entering salary data into a company spreadsheet accidentally put an extra 0 in the boss's salary, listing it as $\$ 2,000,000$ instead of $\$ 200,000$. Explain how the error will affect these summary statistics for the company payroll.
a) mean salary
b) median salary
c) mode salary
3) A small warehouse employs a supervisor at $\$ 1200$ a week, an inventory manager at $\$ 700$ a week, six stock boys at $\$ 400$ a week, and four drivers at $\$ 500$ a week.
a) Find the mean wage (be sure to include a salary for each person)
b) Find the median wage (be sure to include a salary for each person)
c) How many employees earn more than the mean wage?
d) Does the mean or median wage better describe the typical wage at the company? Explain.
4) Which measure, mean median, or mode is considered non-resistant?
5) 100 randomly selected students were surveyed about how many times per day they leave the classroom to go somewhere. The results are given in the distribution below.
\# of Times Leave Frequency
0
1
2
34
23
20
11
4
4
5
6
\qquad $\mathrm{MD}=$ \qquad Mode(s) $=$ \qquad $M R=$ \qquad
6) The grouped frequency distribution shows the results of the scores on a science test.

Complete the table and find the given measures of central tendency.

Class Limits	Class midpoints	Frequency
$50-59$		3
$60-69$		10
$70-79$		9
$80-89$		5
$90-99$		3

$\mu=$ \qquad $M D=$ \qquad Mode $=$ \qquad $M R=$ \qquad
7) The following measures are the diameter of each of the eight planets in miles.

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Diameter (miles)	3,030	7,520	4,217	88,838	74,896	31,762	30,774	1,428

Calculate the five number summary and create a box and whisker plot of the data. Remember to label the axis and title the graph.

5-number summary values					

8) Use the 1.5 (IQR) rule to determine if there are any outliers for the data in \#7 (you must show the work).
9) In 2006 a marketing report recorded the price of an adult ticket for a professional baseball game in the following states.

Arizona	$\$ 19.68$		Philadelphia	$\$ 26.73$
Baltimore	$\$ 22.53$		Pittsburgh	$\$ 17.08$
Boston	$\$ 46.46$		Seattle	$\$ 24.01$
Cleveland	$\$ 21.54$		Tampa Bay	$\$ 17.09$
Kansas City	$\$ 13.17$		Texas	$\$ 15.81$
LA Dodgers	$\$ 20.09$		Toronto	$\$ 23.40$
NY Yankees	$\$ 28.27$		Washington	$\$ 20.88$

Create a cumulative frequency graph of the data. Remember to label your axes and title your graph.

10) Below is data from the National Safety Council in 1999 listing the estimated number of injuries in certain sports based on hospital records during that year.

Sport	Injuries		Sport	Injuries
Basketball	644,921		Golf	39,473
Bicycle riding	544,561		Snowboarding	37,638
Football	334,420		Iceskating	25,379
Baseball, softball	326,714		Bowling	23,317
Roller skating	153,023		Tennis	22,294
Soccer	148,913		Water skiing	10,657
Weight lifting	86,024		Racquetball	10,438
Swimming	83,772		Billards, pool	3,685
Ice hockey	77,491		Archery	3,213
Fishing	72,598		Skateboarding	48,186
Volleyball	67,340			

Calculate the following

Mean = \qquad
Median $=$ \qquad Mode = \qquad

Standard deviation = \qquad Range $=$ \qquad

Describe this data using your SOCS giving specific values for any outliers and the measures of center.

Answer Key:

Matching terms:	True or false:	2) a) increase a lot	7) $\mathrm{min}=1,428$
1) E	1) F switch mean and	b) stay the same	$\mathrm{Q}_{1}=3,623.5$
2) G	median in the	c) stay the same	Med $=19,147$
3) D	sentence	3) a) $\$ 525$	$\mathrm{Q}_{3}=53,329$
4) H	2) Fit should be	b) $\$ 450$	Max $=88,838$
5) I	median instead of	c) 2	See below for box and
6) A	mode	d) median	whisker plot
7) C	3) T	4) mean	8) no outliers
8) F	Multiple choice:	5) $\mathrm{Mean}=1.58$	9) see below for
9) B	1) C	Median = 1	graph
Matching symbols:	2) D	Mode $=0$	10) Mean $=131,621.8$
1) D	3) B	Midrange $=3$	Med $=67,340$
2) F	Solve:	6) Mean $=72.8$	Mode = none
3) A	1) a) $\$ 1001.50$	Median $=74.5$	St. dev. $=180,317.13$
4) E	b) \$1025	Mode $=64.5$	Range $=641,708$
5) B	c) \$1050	Midrange $=74.5$	S: skewed right
6) C	d) $\$ 247.59$ e) $\$ 835$		$\begin{array}{\|c} \hline \text { O: 544,561 and } \\ 644,921 \end{array}$
	f) $\$ 350$		$\begin{aligned} & \text { C: } \text { Mean }=131,621.8 \\ & \text { Med }=67,340 \\ & \text { Mode }=\text { none } \\ & \text { S: inconsistent } \end{aligned}$

