Solving Linear Inequalities

Remember that you switch the inequality sign if you are...

- Multiplying by a negative number
- Dividing by a negative number
- Switching the left and right sides of an inequality

Example One

Solve $30 \ge 2x + 10$	$30 \ge 2x + 10$
Subtract 10 from both sides	-10 -10
Divide both sides by 2	$20 \ge 2x$
	$\frac{20}{2} \ge \frac{2x}{2}$
	$10 \ge x$
Switch the left and right sides	$x \leq 10$

Example Two

Solve $-2(2x-3) < 5$	-2(2x-3) < 5
Distribute -2	-2x + 6 < 5
Subtract 6 from both sides	-6 - 6
	-2x < -1
Divide both sides by -2	$\frac{-2x}{-2} > \frac{-1}{-2}$
Switch the inequality sign!	$x > \frac{1}{2}$

Example Three

Solve
$$2x - 13 \le -3x + 2$$

$$2x - 13 \le -3x + 2$$

$$+3x + 3x$$

$$5x - 13 \le 2$$
 Add 13 to both sides
$$+13 + 13$$

$$5x \le 15$$
 Divide both sides by 5
$$\frac{5x}{5} \le \frac{15}{5}$$

$$x \le 3$$

Solve the following inequalities.

1.
$$25 < 2x + 5$$

2.
$$-x - 7 \ge -9$$

3.
$$14x + 2 < -26$$

4.
$$-4 + \frac{1}{2}x \ge -12$$

5.
$$10 > 2(x - 1)$$

6.
$$-(2x-6) \ge -14$$

7.
$$\frac{1}{6}(12x+6) > 7$$

$$8. \quad 4 \le -\frac{3}{8}(16x - 8)$$

9.
$$5 - x > 9 + x$$

10.
$$-4 + 5x \ge 3 - x$$

11.
$$4x + 1 < 2x + 5$$

12.
$$\frac{1}{2}x \le 2 + x$$