Parallel and Perpendicular Lines

Determine whether the graphs of each pair of equations are parallel, perpendicular, or neither.

1.
$$y = 3x + 4$$

 $y = 3x + 7$

2.
$$y = -4x + 1$$
 $4y = x + 3$

3.
$$y = 2x - 5$$

 $y = 5x - 5$

4.
$$y = -\frac{1}{3}x + 2$$

 $y = 3x - 5$

5.
$$y = \frac{3}{5}x - 3$$

 $5y = 3x - 10$

6.
$$y = 4$$
 $4y = 6$

7.
$$y = 7x + 2$$

 $x + 7y = 8$

8.
$$y = \frac{5}{6}x - 6$$

 $x + 5y = 4$

9.
$$y = -\frac{3}{8}x - 9$$

 $y = \frac{8}{3}x + 3$

Write an equation in slope-intercept form of the line that is parallel to the graph of each equation and passes through the given point.

10.
$$y = 3x + 6$$
; (4, 7)

11.
$$y = x - 4$$
; $(-2, 3)$

10.
$$y = 3x + 6$$
; (4, 7) **11.** $y = x - 4$; (-2, 3) **12.** $y = \frac{1}{2}x + 5$; (4, -5)

13.
$$y + \frac{2}{3}x = 3$$
; (-6, 1)

13.
$$y + \frac{2}{3}x = 3$$
; (-6, 1) **14.** $y - \frac{2}{5}x = -5$; (5, 3) **15.** $y + 2x = 4$; (-1, 2)

15.
$$y + 2x = 4$$
; $(-1, 2)$

Write an equation in slope-intercept form of the line that is perpendicular to the graph of each equation and passes through the given point.

16.
$$y = -5x + 1$$
; (2, -1)

17.
$$y = 2x - 3$$
; (-5, 3)

16.
$$y = -5x + 1$$
; (2, -1) **17.** $y = 2x - 3$; (-5, 3) **18.** $4x + 7y = 3$; (-4, -7)

19.
$$3x - 4y = 2$$
; (6, 0)

20.
$$y = -4x - 2$$
; $(4, -4)$

19.
$$3x - 4y = 2$$
; (6, 0) **20.** $y = -4x - 2$; (4, -4) **21.** $6x + 5y = -3$; (-6, 2)