Unit 4 Notes

	Steps	
Writing an Equation from a Graph in Slope-Intercept	1. Find the slope, <i>m</i> , from the graph	
	2. Find the <i>y</i> -intercept, <i>b</i> , from the graph	
	3. Write the equation in slope-intercept form using the	
	values you found for <i>m</i> and <i>b</i>	
Form	y = m x + b	

Example One

What is the slope of the line?

What is the *y*-intercept of the line?

Write the equation in slope-intercept form:

Example Two

What is the slope of the line?

What is the *y*-intercept of the line?

Write the equation in slope-intercept form:

Example Three

What is the slope of the line?

What is the *y*-intercept of the line?

Write the equation in slope-intercept form:

Example Four

Try These

Equation:

Equation:

Equation:

Equation:

Writing the Equation of Horizontal and Vertical Lines

Equation of a Horizontal Line	Equation of a Vertical Line	
y = b	x = a	
which crosses the	which crosses the	
y-axis at $m{b}$	x-axis at <i>a</i>	

Examples

Try These

Writing an Equation given the Slope and a Point

	Steps
Steps for Writing	1. Using $y = mx + b$, substitute in the slope and the x- and y-
an Equation given	values from the point
Slope and a Point	2. Solve the equation to find <i>b</i> , the <i>y</i> -intercept
	3. Write the equation using the slope and the <i>y</i> -intercept

Example One

Write the equation of the line in slope-intercept form that has a slope of 2 and goes through the point (2, 1)

Example Two

Write the equation of the line in slope-intercept form that has a slope of $-\frac{2}{3}$ and goes through the point (6, -2)

Example Three

Write the equation of the line in slope-intercept form that has a slope of -1 and goes through the point (-1, -4)

1. Write the equation of the line in slope-intercept form that contains the point (6, 0) and has a slope of $\frac{1}{2}$.

2. Write the equation of the line in slope-intercept form line that has a slope of $-\frac{1}{4}$ and contains the point (-8, -1).

3. Write the equation of the line in slope-intercept form that has a slope of 3 and goes through the point (2, 8).

4. Write the equation of the line in slope-intercept form that has a slope of -2 and goes through the point (1, -3).

5. Write the equation of the line in slope-intercept form that goes through the point (15, 2) and has a slope of $\frac{3}{5}$.

Writing an Equation given Two Points on the Line

	Steps
Steps for Writing	1. Using the slope formula $m = \frac{y_2 - y_1}{x_2 - x_1}$, find the slope.
an Equation given Two Points on the	2. Using $y = mx + b$, substitute in the slope and the x- and y- values from one of the two points (you pick which one)
Line	 Solve the equation to find b, the y-intercept Write the equation using the slope and the y-intercept

Example One

Write the equation, in slope-intercept form, of the line that contains the points (3, 3) and (5, 7).

Example Two

Write the equation of the line that contains the points (-4, 7) and (10, 0).

Example Three

Write the equation of the line that contains the points (1, 3) and (4, -9).

1. Write the equation of the line in slope-intercept form that contains the points (4, 0) and (6, 8).

2. Write the equation of the line in slope-intercept form that contains the points (-6, -2) and (-3, -3).

3. Write the equation of the line in slope-intercept form that contains the points (3, 4) and (-1, -2).

4. Write the equation of the line in slope-intercept form that contains the points (6,6) and (-2, -2).

Write the equation of the line in slope-intercept form that contains the points (1, −9) and (−3, 3).

Parallel Lines

Parallel Lines

Lines that have the SAME SLOPE but different *y*-intercepts are parallel lines.

Examples

- 1. What is the slope of a line parallel to y = 3x 5?
- 2. What is the slope of a line parallel to y = -7x + 2?
- 3. What is the slope of a line parallel to 4x + 2y = 8?
- 4. What is the slope of a line parallel to 8x y = 3?

Examples

The **opposite** of *a* is – *a*. The **reciprocal** of *a* is $\frac{1}{a}$.

1. Find the opposite reciprocal of the following numbers:

a.	3	d.	$\frac{1}{2}$
b.	$-\frac{2}{3}$	e.	6
c.	-1	f.	$\frac{7}{2}$

- 2. What is the slope of a line perpendicular to y = 4x 1?
- 3. What is the slope of a line perpendicular to $y = -\frac{1}{2}x 2$?
- 4. What is the slope of a line perpendicular to 3x y = 5?

5. What is the slope of a line perpendicular to x - 5y = 3?

Writing the Equation of Parallel and Perpendicular Lines

	1. Determine the slope of the equation based on the equation given
Steps for Writing	• Parallel = same slope
the Equation of	 Perpendicular = opposite reciprocal
Parallel and	2. Using $y = mx + b$, substitute in the slope and the x- and y-
Perpendicular Lines	values from the point
	3. Solve the equation to find <i>b</i> , the <i>y</i> -intercept
	4. Write the equation using the slope and the <i>y</i> -intercept

Example One

Write the equation of the line, in slope-intercept form, that passes through the point (3, 5) and is **PARALLEL** to y = -2x + 9.

Write the equation of the line, in slope-intercept form, that passes through the point (3, 5) and is **PERPENDICULAR** to y = -2x + 9.

Example Two

Write the equation of the line, in slope-intercept form, that passes through the point (-4, 1) and is **PERPENDICULAR** to x - 3y = 6.

Write the equation of the line, in slope-intercept form, that passes through the point (- 4, 1) and is **PARALLEL** to x - 3y = 6.

Write the equation of the line, in slope-intercept form, given the following information.

1. parallel to 5x - 2y = 10 and passes through the point (6, -5)

2. perpendicular to y = 3x - 4 and passes through the point (3, 7)

3. passes through the point (-1, 4) and is parallel to y = 2x + 5

4. passes through the point (6, -4) and is perpendicular to 3x + y = 5

Modeling with Linear Equations

Example One

Many electricians use a fixed-cost equation to determine how much to charge for a house call. For example, an electrician might charge \$45 for coming to your house and \$25 for each hour of service.

- a. What is the fixed-cost equation?
- b. How much would this electrician charge you for coming to your house and working for 3 hours?

Example Two

Joe purchased a GoPhone. He paid \$16 for 2 hours of talk time in January and \$24 for 5 hours of talk time in February.

a. Write an equation where *x* represents the number of hours and *y* represents the total monthly bill.

b. Joe used the phone for 8 hours in March. How much does he have to pay?

Example Three

If the air temperature is 76 °F at 8 A.M. and 92 °F at 4 P.M., write an equation where x represents the number of hours and T represents the temperature.

- 1. Athletic Fitness offers gym memberships at a cost of \$16 per month and a one-time enrollment fee of \$30.
 - a. Write a linear equation to find the total cost, *C*, to enroll at the gym for *n* number of months.
 - b. How much does it cost for two years?
- 2. The cost for 7 dance lessons is \$82. The cost for 11 dance lessons is \$122.
 - a. Write a linear equation to find the total cost, *C*, for *x* lessons.

- b. How much does it cost for 15 dance lessons?
- 3. Marlin rented a truck to move furniture. He drove 26 miles on Monday and it cost him \$53 to rent the truck for the day. He drove 38 miles on Tuesday and it cost him \$59 for the day.
 - a. Write a linear equation to find the rental cost, *C*, for driving the truck *m* miles.

b. If he drives 79 miles on Wednesday, how much will it cost him to rent the truck?