Objectives

The student will be able to:

- 1. identify the domain and range of a relation.
- 2. show relations as sets and mappings.

SOL: A.7bf

How about some more definitions? The **domain** is the

set of 1st coordinates of the ordered pairs.

The **range** is the

set of 2nd coordinates of the ordered pairs.

A **relation** is a

set of ordered pairs.

Given the relation $\{(3,2), (1,6), (-2,0)\},$ find the domain and range.

Domain =
$$\{3, 1, -2\}$$

Range = $\{2, 6, 0\}$

What would this be?

$$\{(2,4), (3,-1), (0,-4)\}$$

A bad relationship!! Ha! Ha!

The relation {(2,1), (-1,3), (0,4)} can be shown by

1) a table.

X	y
2	1
-1	3
0	4

2) a mapping.

3) a graph.

Given the following table, show the relation, domain, range, and mapping.

Relation =
$$\{(-1,3), (0,6), (4,-1), (7,3)\}$$

Domain = $\{-1, 0, 4, 7\}$
Range = $\{3, 6, -1, 3\}$

You do not need to write 3 twice in the range!

What is the domain of the relation $\{(2,1), (4,2), (3,3), (4,1)\}$

- 1. $\{2, 3, 4, 4\}$
- 2. {1, 2, 3, 1}
- **✓**3. {2, 3, 4}
 - 4. {1, 2, 3}
 - 5. {1, 2, 3, 4}

Answer Now

What is the range of the relation $\{(2,1), (4,2), (3,3), (4,1)\}$

- 1. {2, 3, 4, 4}
- 2. {1, 2, 3, 1}
- $3. \{2, 3, 4\}$
- **✓**4. {1, 2, 3}
 - 5. {1, 2, 3, 4}

Answer Now

Inverse of a Relation: For every ordered pair (x,y) there must be a (y,x). Write the relation and the inverse.

Relation = $\{(-1,-6), (3,-4), (3,2), (4,2)\}$ Inverse = $\{(-6,-1), (-4,3), (2,3), (2,4)\}$ Write the inverse of the mapping.

1.
$$\{(4,-3),(2,-3),(3,-3),(-1,-3)\}$$

2.
$$\{(-3,4),(-3,3),(-3,-1),(-3,2)\}$$

$$4. \{-1, 2, 3, 4\}$$

Answer Now