11-2 Area of Parallelograms, Triangles, and Rhombuses

Area of a Parallelogram: $A_{para} = bh$

Area of a Triangle: $A_{\text{tri}} = \frac{1}{2}bh$

Area of a Rhombus: $A_{\text{rhom}} = \frac{1}{2} d_1 d_2$ where d_1 and d_2 are the diagonals of the rhombus

Ex 2) Find the area of an equilateral triangle that has a perimeter of 36 in.

Ex 3) Find the area of the rhombus that has a perimeter of 80 ft and one diagonal of 12 ft.

$$6^{2} + x^{2} = 20^{2}$$

$$36 + x^{2} = 400$$

$$x^{2} - 364$$

$$x = \sqrt{4.91}$$

$$x = 2\sqrt{91}$$

$$36 + x^{2} - 400$$

 $x^{2} - 369$
 $X = \sqrt{4.91}$
 $= 24\sqrt{91}$
 $= 24\sqrt{91}$ $= 24\sqrt{91}$ $= 24\sqrt{91}$ $= 24\sqrt{91}$

 $X=2\sqrt{9}$ $J_2=4\sqrt{9}$ Ex 4) Find the height of a triangle that has an area of $4\sqrt{3}$ cm² and a base of $2\sqrt{2}$ cm.

Ex 5) Find the area of an isosceles triangle with sides 10, 10, and 16 feet.

Ex 6) Find the area of a rectangle that is inscribed in a circle with a radius of 8 m and the length of the rectangle is 12 m.

Ex 7) Find the area of the shape (it is not a parallelogram).

$$A_{2}=\frac{1}{3}(4)(8\sqrt{3})$$
= 16\sqrt{3}